Unit 6 - Week 4: Kine

Со	ourse outline
	w does an NPTEL online irse work?
We	ek 0 : Prerequisite
We	ek 1: Introduction
	ek 2: Mathematical liminaries -1
	ek 3: Mathematical liminaries - 2
We	ek 4: Kinematics - 1
	Lec 11: Idea of Motion, Materia and Spatial Descriptions, Deformation Gradient Tensor
	Lec 12: Strain, Polar Decomposition - 1
	Lec 13: Polar Decomposition - 2, Volume and Area Change
0	Quiz : Assignment 4
0	Feedback form
0	Lecture Notes
We	ek 5: Kinematics - 2
We	ek 6: Kinetics - 1
We	ek 7: Kinetics - 2
We	ek 8: Hyperelasticity - 1
We	ek 9: Hyperelasticity - 2
We	ek 10: Linearization
We	ek 11: Discretization
We	ek 12: Solution Procedure
Liv	e session

Λ :	
Assignment 4 The due date for submitting this assignment has passed.	Due on 2020-10-14, 23:59 IS
As per our records you have not submitted this assignment. 1) An observer, sitting still in room, is observing and describing the outside world phenomenon through the window	w of the room. Such a description of the outsid
rld is called the description.	
int	
Io, the answer is incorrect.	
Accepted Answers: Type: String) spatial	
Type: String) Eulerian	
Type: String) eulerian Type: String) Spatial Type: String) spatial/Eulerian	
Choose True/False for the following assertion: "The deformation gradient tensor maps the relative spatial positi	on vector to the relative material position 1
tor."	on vector to the relative material position
(a) True. (b) False.	
lo, the answer is incorrect.	
accepted Answers: b) False.	
A deformation in which the components of the deformation gradient tensor are independent of the coordinates,	i.e. are constant, is called a deforma
nt	
Io, the answer is incorrect. Score: 0	
ccepted Answers: Type: String) homogeneous Type: String) Homogeneous	
	0 p
) The determinant of the deformation gradient tensor for isochoric deformation is	
nt	
o, the answer is incorrect.	
ccepted Answers:	
Type: String) 1 Type: String) one	
Type: String) 1.0 Type: String) One	
Type: String) unit Type: String) unity	
ype. Gung/ unity	1
Choose True/False for the following assertion: "Simple shear deformation is both homogeneous and isochoric."	1
(a) True.	
(b) False. lo, the answer is incorrect.	
accepted Answers: a) True.	
Right polar decomposition can be understood as	1
(a) first rotation and then deformation.	
(b) both rotation and deformation are simultaneous.	
(c) first deformation and then rotation. (d) none of these.	
o, the answer is incorrect.	
core: 0 ccepted Answers: c) first deformation and then rotation.	
Left polar decomposition can be understood as	1
(a) first rotation and then deformation.	
(b) both rotation and deformation are simultaneous.	
(c) first deformation and then rotation. (d) none of these.	
o, the answer is incorrect.	
ccepted Answers: a) first rotation and then deformation.	
Which of the following statements are correct.	1
(a) The principal values of the right Cauchy-Green tensor and the right stretch tensor are same.	,
(b) The principal values of the right Cauchy-Green tensor and the right stretch tensor are same.	
(c) The principal values of the right stretch tensor and the left stretch tensor are same.	
 (d) The principal vectors of the right stretch tensor and the left stretch tensor are same. o, the answer is incorrect. 	
core: 0 ccepted Answers:	
 The principal vectors of the right Cauchy-Green tensor and the right stretch tensor are same. The principal values of the right stretch tensor and the left stretch tensor are same. 	
Stretch is defined as the	1
(a) ratio of change in length of an element to its original length.	
(b) ratio of final length to original length. (c) ratio of original length to final length.	
(d) ratio of change in length of an element to its final length.	
lo, the answer is incorrect. core: 0 ccepted Answers:	
b) ratio of final length to original length.	
O) Fill in the blanks: In solid mechanics usually description is followed while in fluid mechanics (a) Lagrangian; Eulerian	description is preferred. 1
(b) spatial; material	
(c) material; spatial (d) Eulerian; Lagrangian	
No, the answer is incorrect.	
Score: 0 Accepted Answers:	
'a) Lagrangian; Eulerian 'c) material; spatial	