Assignment 2

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

1) Choose True/False for the following assertion: “Direct notation is independent of the coordinate system.”
 - True
 - False
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 (a) True
 (b) False

2) Choose True/False for the following assertion: “A free index can occur only once in a symbol group but can be different in different symbol groups.”
 - True
 - False
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 (a) True
 (b) False

3) Choose True/False for the following assertion: “A dummy index can occur at most twice in a symbol group but can be different in different symbol groups.”
 - True
 - False
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 (a) True
 (b) False

4) Which one of the below indicial notation is valid for $C = AB$ where all quantities are second order tensors?
 - $(a_i)_j = A_{ik}B_{kj}$
 - $(a_i)_j = C_{ij}$
 - $(a_i)_j = B_{ij}$
 - $(a_i)_j = D_{ij}C_{ij}$
 - All of these
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 (a) $(a_i)_j = A_{ik}B_{kj}$
 (b) $(a_i)_j = C_{ij}$
 (c) $(a_i)_j = B_{ij}$
 (d) $(a_i)_j = D_{ij}C_{ij}$
 (e) All of these

5) Which of the following expressions are valid?
 - $(A_{ij}B_{jk})_i = 9$
 - $(A_{ij}B_{jk})_i = 0$
 - $(A_{ij}B_{jk})_i = 1$
 - $(A_{ij}B_{jk})_i = 2$
 - $(A_{ij}B_{jk})_i = 3$
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 (a) $(A_{ij}B_{jk})_i = 9$
 (b) $(A_{ij}B_{jk})_i = 0$
 (c) $(A_{ij}B_{jk})_i = 1$
 (d) $(A_{ij}B_{jk})_i = 2$
 (e) $(A_{ij}B_{jk})_i = 3$

6) Which of the following are correct expressions for the vector identities given below?
 - $(\nabla \times (\phi x m)) = \nabla \phi \times m + \phi (\nabla \times m)$ in indicial notation can be written as $A_{jk}B_{ij}h_{jk}$
 - $(\nabla \times (\phi x m)) = \nabla \phi \times m + \phi \nabla \times m$ in indicial notation can be written as $A_{jk}B_{ij}h_{jk}$
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 (a) $(\nabla \times (\phi x m)) = \nabla \phi \times m + \phi (\nabla \times m)$
 (b) $(\nabla \times (\phi x m)) = \nabla \phi \times m + \phi \nabla \times m$
 (c) $(\nabla \times (\phi x m)) = \nabla \phi \times m + \phi (\nabla \times m)$
 (d) $(\nabla \times (\phi x m)) = \nabla \phi \times m + \phi \nabla \times m$

7) Choose True/False for the following assertion: “The double contraction of a symmetric and an antisymmetric tensor is zero.”
 - True
 - False
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 (a) True
 (b) False

8) Which of the following assertions are correct?
 - (a) A second order tensor maps a vector to another vector.
 - (b) All second order tensors can be written as a dyad.
 - (c) A fourth order tensor maps a second order tensor to another second order tensor.
 - (d) Any tensor in two-dimension can be expressed a linear combination of two dyads provided the first vectors of the two dyads are linearly independent.
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 (a) A second order tensor maps a vector to another vector.
 (b) All second order tensors can be written as a dyad.
 (c) A fourth order tensor maps a second order tensor to another second order tensor.
 (d) Any tensor in two-dimension can be expressed a linear combination of two dyads provided the first vectors of the two dyads are linearly independent.