Week 11: Two dimensional Vector field and Eigen value problems

Assignment 10

Due on 2020-11-26, 23:59 IST.

Problem 1

Figure 1

1. Which of the following represents the correct expression for the shape functions (see Fig. 1)?
 a) \(N_1 = \frac{x}{x_1}, \quad N_2 = \frac{x}{x_2}, \quad N_3 = \frac{x}{x_3} \)
 b) \(N_1 = \frac{x}{x_1} - \frac{x_2}{x_2}, \quad N_2 = \frac{x}{x_2} - \frac{x_3}{x_3} \)
 c) \(N_1 = \frac{x}{x_1} - \frac{x_2}{x_2}, \quad N_2 = \frac{x}{x_2} - \frac{x_3}{x_3} \)
 d) \(N_1 = \frac{x}{x_1} - \frac{x_2}{x_2}, \quad N_2 = \frac{x}{x_2} - \frac{x_3}{x_3} \)

 2 points

2. What is the value of \(\sigma_{yy} \) (if the stress is given as \(\sigma \sigma' \))?
 a) \(10 \) MPa
 b) \(15 \) MPa
 c) \(20 \) MPa

 2 points

3. What is the value of \(\sigma_{xx} \) (if the stress is given as \(\sigma \sigma' \))?
 a) \(20 \) MPa
 b) \(25 \) MPa
 c) \(30 \) MPa

 2 points

4. Which of the following represent the displacement conditions for this problem?
 a) \(u(x) = 0, \quad v(x) = 0 \)
 b) \(u(x) = x, \quad v(x) = 0 \)
 c) \(u(x) = x, \quad v(x) = x \)

 2 points

5. Calculate the value of \(u_{xx} \) at the given point.

 2 points

6. Calculate the value of \(u_{yy} \) at the given point.

 2 points

7. Calculate the value of \(v_{xx} \) at the given point.

 2 points

8. Calculate the value of \(v_{yy} \) at the given point.

 2 points

9. Calculate the value of \(\theta \) at the given point.

 2 points