Assignment 5

The due date for submitting this assignment has passed.

1. Which among the following schemes is inconsistent while solving a 1D parabolic equation?
 - Crank-Nicolson Method
 - Leapfrog Method
 - Gauss-Seidel Method
 - None, the answer is incorrect.

 Accepted Answers:
 - None, the answer is incorrect.

2. The maximum step size that can be used to obtain a stable solution for a 1D unsteady heat conduction equation using FTCS method for
 \[\Delta t = \frac{1}{10} \Delta x^2 \]
 and
 \[\Delta x = 13 \text{mm} \]
 is
 - 16 s
 - 36 s
 - 90 s
 - 48 s

 Accepted Answers:
 - None, the answer is incorrect.

3. The number of initial conditions required to solve a 1D parabolic equation using Richardson method is
 - 1
 - 2
 - 3
 - 4

 Accepted Answers:
 - None, the answer is incorrect.

4. The discretized form of the equation
 \[\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0 \]
 using Crank-Nicolson scheme for point 10 is
 \[\frac{\Delta t}{2} \left(\frac{u_{i+1}^{n+1} - u_i^{n+1}}{\Delta x} + \frac{u_i^{n+1} - u_{i-1}^{n+1}}{\Delta x} \right) = 0 \]
 The value of \(\Delta t \) for which the transverse error reduces to \(0 \) is
 - 0 s
 - 1 s
 - 10 s
 - None, the answer is incorrect.

 Accepted Answers:
 - None, the answer is incorrect.

5. The equation
 \[\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0 \]
 has a transverse error of
 \[\left| u(x_1, t_1) - u(x_2, t_1) \right| \]
 The value of \(\Delta t \) for which the transverse error reduces to \(0 \) is
 - 0 s
 - 1 s
 - 10 s

 Accepted Answers:
 - None, the answer is incorrect.

6. The discretized form of the equation
 \[\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0 \]
 using the scheme for point 11 is
 \[\frac{\Delta t}{2} \left(\frac{u_{i+1}^{n+1} - u_i^{n+1}}{\Delta x} + \frac{u_i^{n+1} - u_{i-1}^{n+1}}{\Delta x} \right) = 0 \]
 The value of \(\Delta t \) for which the transverse error reduces to \(0 \) is
 - 0 s
 - 1 s
 - 10 s

 Accepted Answers:
 - None, the answer is incorrect.

7. The discretized form of the equation
 \[\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0 \]
 using Crank-Nicolson scheme for point 12 is
 \[\frac{\Delta t}{2} \left(\frac{u_{i+1}^{n+1} - u_i^{n+1}}{\Delta x} + \frac{u_i^{n+1} - u_{i-1}^{n+1}}{\Delta x} \right) = 0 \]
 The value of \(\Delta t \) for which the transverse error reduces to \(0 \) is
 - 0 s
 - 1 s
 - 10 s

 Accepted Answers:
 - None, the answer is incorrect.

8. The discretized form of the equation
 \[\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0 \]
 using the scheme for point 13 is
 \[\frac{\Delta t}{2} \left(\frac{u_{i+1}^{n+1} - u_i^{n+1}}{\Delta x} + \frac{u_i^{n+1} - u_{i-1}^{n+1}}{\Delta x} \right) = 0 \]
 The value of \(\Delta t \) for which the transverse error reduces to \(0 \) is
 - 0 s
 - 1 s
 - 10 s

 Accepted Answers:
 - None, the answer is incorrect.

9. The discretized form of the equation
 \[\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0 \]
 using Crank-Nicolson scheme for point 14 is
 \[\frac{\Delta t}{2} \left(\frac{u_{i+1}^{n+1} - u_i^{n+1}}{\Delta x} + \frac{u_i^{n+1} - u_{i-1}^{n+1}}{\Delta x} \right) = 0 \]
 The value of \(\Delta t \) for which the transverse error reduces to \(0 \) is
 - 0 s
 - 1 s
 - 10 s

 Accepted Answers:
 - None, the answer is incorrect.

10. The discretized form of the equation
 \[\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0 \]
 using the scheme for point 15 is
 \[\frac{\Delta t}{2} \left(\frac{u_{i+1}^{n+1} - u_i^{n+1}}{\Delta x} + \frac{u_i^{n+1} - u_{i-1}^{n+1}}{\Delta x} \right) = 0 \]
 The value of \(\Delta t \) for which the transverse error reduces to \(0 \) is
 - 0 s
 - 1 s
 - 10 s

 Accepted Answers:
 - None, the answer is incorrect.

Due on 2020-03-04, 23:59 CET.