Assignment 11

The due date for submitting this assignment has passed. As per our guidelines you have not submitted this assignment.

Due on 2019-10-15, 23:00 IST.

Assignment 11

1. Which of the following statements are correct regarding shock wave hardening?
 - True
 - False
 - Cannot be determined

2. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

3. Which of the following statements are correct regarding shock wave hardening?
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

4. Which of the following materials are resistant to shock wave hardening?
 - Carbon steel
 - Austenitic steel
 - Ferritic steel
 - Austenitic stainless steel

5. Shock wave hardening is associated with the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

6. Shock wave hardening involves the following materials:
 - Carbon steel
 - Austenitic stainless steel
 - Ferritic steel
 - Austenitic austenitic steel

7. Shock wave hardening is associated with the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

8. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

9. Shock wave hardening is associated with the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

10. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

11. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

12. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

13. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

14. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

15. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

16. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

17. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

18. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

19. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

20. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

21. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

22. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

23. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

24. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

25. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

26. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

27. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

28. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

29. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity

30. Shock wave hardening involves the following:
 - Increase in hardness
 - Increase in density
 - Increase in shock wave velocity
 - Increase in particle velocity