

1 : Basic Terminology, Equations and Methods

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

National Programme on Technology Enhanced Learning In association with

G+

Course outline	Assignment 1		
outinto	The due date for submitting this assignment has passed		
How to access the portal	As per our records you have not submitted this assignment. Due on 2018-09-05, 23:59 IST assignment.		
Assignment 0: Basics	1) For carbon-epoxy composite Young's Modulus along longitudinal and transverse directions 1 point are $E_1 = 147GPa$, $E_2 = 10GPa$, shear modulus $G_{12} = 7GPa$ and poisson's		
Week 1 : Basic Terminology, Equations and Methods	ratio $ u_{12} = 0.27$ then the compliance coefficients $(S_{11}, S_{12}, S_{22}, S_{66})$ in $(GPa)^{-1}$ will be $(0.00794, -0.00223, 0.9091, 1.5152)$		
Basic of Solid Mechanics	(0.0068, -0.00183, 0.01, 0.1428)		
Energy Principles	(0.0068, -0.00183, 0.1, 0.1428)		
 Classification of Plate Theories and Some Basics 	(0.364, -0.15, 0.6031, 0.0152)		
 Tutorial 1: Transformation of Tensors 	Score: 0 Accepted Answers: (0.0068, -0.00183, 0.1, 0.1428)		
Quiz : Assignment 1	2) The displacement field v is given in the following 1 po		
Week 2 : Derivation of Classical Plate Equations	$\delta\epsilon_{yy} = \delta v_{0,y} - z \delta w_{0,yy} + (\delta z) w_{0,yy}$		
Week 3 : Analytical Solution - Navier and Levy for Bending Case	$\delta \epsilon_{yy} = \delta v_{0,y} - z \delta w_{0,yy}$ $\delta \epsilon_{yy} = \delta v_{0,y} - z \delta w_{0,y}$		
Week 4 : Approximate Solution Techniques and 3D solution	$\delta \epsilon_{yy} = \delta v_{0,yy} - z \delta w_{0,yy}$ No, the answer is incorrect. Score: 0 Accepted Answers:		
	3) Plane Lamina having $\sigma_x = 40MPa$, $\sigma_y = 10MPa$, $\tau_{xy} = 5MPa$. Calculate the 1 potransformed stresses σ_1 and σ_2 in MPa when the fiber angle is $\theta = 45^0$ to the x-axis		
	(30, 20) (20, 30)		
	(30, 10) (10, 30)		
	No, the answer is incorrect.		

Accepted Answers: (30, 20)

4) For a particular case of screw dislocation the displacements are given by $u = v = 0, w = \frac{b}{2\pi} \tan^{-1} \frac{y}{2x}$. The value of the strains $\epsilon_{xz}, \epsilon_{yz}$ are

$$\frac{-b}{2\pi} \left(\frac{y}{x^2+4y^2}\right), \frac{b}{2\pi} \left(\frac{x}{4x^2+y^2}\right)$$
$$\frac{-b}{2\pi} \left(\frac{y}{4x^2+y^2}\right), \frac{b}{\pi} \left(\frac{4x}{x^2+y^2}\right)$$
$$\frac{-b}{2\pi} \left(\frac{y}{4x^2+y^2}\right), \frac{b}{2\pi} \left(\frac{x}{4x^2+y^2}\right)$$
$$\frac{-b}{2\pi} \left(\frac{y}{4x^2+4y^2}\right), \frac{b}{\pi} \left(\frac{2x}{4x^2+y^2}\right)$$

No, the answer is incorrect.

Score: 0

Accepted Answers: $\frac{-b}{2\pi}\left(\frac{y}{4x^2+y^2}\right), \frac{b}{2\pi}\left(\frac{x}{4x^2+y^2}\right)$

5) The components of a second-order tensor in a particular coordinate frame are given by **1** point

$$a_{ij} = egin{bmatrix} 2 & 0 & 3 \ 0 & 1 & 3 \ 4 & 2 & 1 \end{bmatrix}$$

Determine the components of each tensor in a new coordinate system found through a rotation of 60^0 about the x_3 axis

1.24	0.433	-4.098		
-0.433	1.749	-1.098		
-3.732	-2.464	1		
0				
1.24	-0.433	4.098		
-0.433	1.749	-1.098		
3.732	-2.464	1		
No, the answer is incorrect. Score: 0				
Accented Answers				
Accepted Anowers.				

6) Consider a beam, clamped at both ends

3.732

 $1.24 \quad -0.433 \quad 4.098$ -0.433 1.749 -1.0983.732 -2.464 1

1 point

i.e w=0 and $w_{,x}=0$ at x=0,and w=0 and $w_{,x}=0$ at x=L.It is subjected to uniformly distributed load acting downward, $q=q_0$. The equation of the beam is $EIw_{,xxxx}=q$. The deflection of the beam is given by

$$\begin{bmatrix} \frac{q_0 x^4}{24} + \frac{q_0 x^2 L^2}{24} + \frac{q_0 x^3 L}{2L} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{EI} \begin{bmatrix} \frac{q_0 x^4}{24} + \frac{q_0 x^2 L^2}{24} - \frac{q_0 x^3 L}{2L} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{EI} \begin{bmatrix} \frac{q_0 x^4}{24} - \frac{q_0 x^2 L^2}{24} - \frac{q_0 x^3 L}{2L} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{EI} \begin{bmatrix} \frac{q_0 x^4}{24} - \frac{q_0 x^2 L^2}{24} - \frac{q_0 x^3 L}{2L} \end{bmatrix}$$
None of the above

No, the answer is incorrect. Score: 0

Accepted Answers: None of the above

7) For carbon-epoxy composite Young's modulus along the longitudinal and transverse 1 point direction are $E_1 = 147 GPa, E_2 = 10 GPa$ and shear modulus $G_{12}=7GPa$ and $u_{12}=0.27$,then the reduced stiffness coefficients $(Q_{11}, Q_{12}, Q_{22}, Q_{66})$ in (GPa) will be

(14.7, 27.03, 10.049, 7)(147.732, 2.703, 10.049, 7)(147.732, 2.703, 13.049, 7)(14.7, 27.03, 13.049, 0.142)No, the answer is incorrect. Score: 0

Accepted Answers: (147.732, 2.703, 10.049, 7)

8) A function is defined by $F(y,v)=f(y)+y^2v(y)-2vv_{,y}+2ycosv$ then the first ${f 1}$ point variation of F will be

$$\delta F = y^2 \delta v - 2 \delta v v_{,y} - 2 v \delta v_{,y} + 2 y cosv \delta v$$

 $\delta F = 2y \delta v - 2 \delta v v_{,y} - 2 v \delta v_{,y} - 2 y sinv \delta v$
 $\delta F = y^2 \delta v - 2 \delta v v_{,yy} - 2 v \delta v + 2 y sinv \delta v$
 $\delta F = y^2 \delta v - 2 \delta v v_{,y} - 2 v \delta v_{,y} - 2 y sinv \delta v$

No, the answer is incorrect.

Score: 0

Accepted Answers:

 $\delta F = y^2 \delta v - 2 \delta v v_{,y} - 2 v \delta v_{,y} - 2 y sinv \delta v$

1 point

9) Consider the displacement fields $u(x,z,t)=u_0(x,t)+z\phi(x,t)$, v(x,z,t)=0 and $w(x,z,t)=w_0(x,t)$ then the non-linear strain E_{xx} is given by

$$u_{0,x} + z\phi_{,x} + \frac{1}{2} \left[(u_{0,x})^2 + (w_{0,x})^2 \right] + zu_{0,x}\phi_{,x} + \frac{z^2}{2} (\phi_{,x})^2$$

$$u_{0,x} + z\phi_{,x} + \frac{1}{2} \left[(u_{0,x})^2 + (w_{0,x})^2 \right] + zu_{0,x}\phi_{,x} + \frac{z^2}{2} (\phi_{,x})$$

$$u_{0,x} + z\phi_{,x} + \left[(u_{0,x})^2 + (w_{0,x})^2 \right] + zu_{0,x}\phi_{,x} + \frac{z^2}{2} (\phi_{,x})$$

$$u_{0,x} + z\phi_{,x} + \frac{1}{2} \left[(u_{0,xx})^2 + (w_{0,xx})^2 \right] + zu_{0,x}\phi_{,x} + \frac{z^2}{4} (\phi_{,x})^2$$
No, the answer is incorrect.
Score: 0

Accepted Answers:

 $\left[u_{0,x}+z\phi_{,x}+rac{1}{2}\left[(u_{0,x})^2+(w_{0,x})^2
ight]+zu_{0,x}\phi_{,x}+rac{z^2}{2}\left(\phi_{,x}
ight)^2
ight]$

Previous Page

End