Assignment 9

This is the deadline for submitting this assignment.
As per our records you have not submitted this assignment.

Due on 2019-10-02, 03:09 IST.

1. Which of the following hold true for pure bending of a beam?
 - bending moment is a scalar along the length of the beam
 - shear force is absent in the beam's cross-section
 - a straight beam deflection is due to an arc of a circle
 - none of these
 - the answer is incorrect.

 Accepted Answers: None of these

2. Under what condition does the neutral axis not pass through the beam's cross-section's centroid?
 - when the cross-section is circular or rectangular
 - when the cross-section is non-symmetrical and has arbitrary axes
 - when the bending moment is not aligned along the cross-section's principal axis
 - none of these
 - the answer is incorrect.

 Accepted Answers: None of these

3. Think of a composite circular beam having inner core of aluminium and outer shell of steel. Which of the following hold true during pure bending of such a beam?
 - bending stress (σ) at a point in the cross-section is proportional to the point's distance from the neutral axis
 - bending strain (e) at a point is proportional to the point's distance from the cross-section's centre
 - bending stress (σ) becomes discontinuous at the interface of inner core and outer shell
 - none of these
 - the answer is incorrect.

 Accepted Answers: None of these

4. Which of the following hold true for pure bending of a rectangular beam?
 - neutral axis always coincides with the direction of applied bending moment
 - when the bending moment does not act along the principal axes of the cross-section, the neutral axis and bending moments' direction do not coincide
 - when the rectangular cross-section becomes square, the direction of bending moment and neutral axis always coincide
 - none of these
 - the answer is incorrect.

 Accepted Answers: None of these

5. During non-uniform bending of rectangular beams (with the bending moment aligned along the cross-section's principal axes), which of the following hold true?
 - no shear stress acts in the cross-section
 - shear stress varies in the cross-section with its maximum value at the neutral axis
 - the ratio of shear stress at the neutral axis to the value of average shear stress equals 1.3
 - shear stress varies along all four edges of the cross-section
 - the answer is incorrect.

 Accepted Answers: None of these

6. Which of the following hold true during pure bending?
 - when the bending moment does not act along the principal axes of the cross-section, the neutral axis and bending moments' direction do not coincide
 - when the rectangular cross-section becomes square, the direction of bending moment and neutral axis always coincide
 - shear stress varies along all four edges of the cross-section
 - none of these
 - the answer is incorrect.

 Accepted Answers: None of these

7. What is the cross-section that the following hold true: shear stress across the cross-section's perimeter is aligned along the panhandle. If the distributed load on the beam's outer surface has no axial component?
 - for a cross-section circles
 - only for thin cross-sections
 - only for open cross-sections
 - it is never true
 - the answer is incorrect.

 Accepted Answers: Only for open cross-sections

8. What simplification does the assumption of the cross-section lead to so that we are able to obtain analytical formulae for shear stress distribution in unsymmetrical beam?
 - the direction of shear stress gets fixed along the cross-section's perimeter everywhere through the thickness of the cross-section
 - the magnitude of shear stress becomes constant through the thickness of the cross-section
 - even without the cross-section being thin, we can obtain analytical formulae for shear stress
 - none of these
 - the answer is incorrect.

 Accepted Answers: Even without the cross-section being thin, we can obtain analytical formulae for shear stress

9. Why did we need cross-section to be an open? while deriving shear stress distribution in unsymmetrical beam?
 - it is not necessary
 - shear stress becomes constant through the thickness of the cross-section
 - it is only necessary
 - none of these
 - the answer is incorrect.

 Accepted Answers: Even without the cross-section being open, the shear stress (σ) at any cross-section becomes known

10. Think of an arbitrary cross-section such that I_y = 3 I_x. Further suppose that the bending moment acts along the axis, what would be the angle between neutral axis and the x-axis of the cross-section?
 - we also need to know 60 degrees
 - 90 degrees
 - 0 degrees
 - none of these
 - the answer is incorrect.

 Accepted Answers: 90 degrees