1. (a) Compute the bases of $\text{Ker } f$ and $\text{Im } f$ where $f : \mathbb{R}^3 \to \mathbb{R}^3$ with $f(x_1, x_2, x_3) = (x_1 + 2x_2 + 3x_3, x_1 + 3x_2 + 2x_3, x_1 + x_2)$. (2)

(b) Let $f : V \to W$ be a homomorphism of finite dimensional vector spaces.

 i. Show that f is injective if and only if there exists a homomorphism $g : W \to V$ such that $g \circ f = id_V$. (2)

 ii. Show that f is surjective if and only if there exists a homomorphism $h : W \to V$ such that $f \circ h = id_W$. (2)

(c) Let $h : D \to D'$ be an arbitrary map. For every field K, the map $h^* : K^D \to K^{D'}$ defined by $g \mapsto g \circ h$ is K-linear. Describe the functions in $\text{Ker } h^*$ and in $\text{Im } h^*$. Show that h^* is injective if and only if h is surjective. (4)

(d) For every K-vector space V, the map $f \mapsto f(1)$ is a K-isomorphism of $\text{Hom}_K(K, V)$ onto V. (4)

2. Let $I \subseteq \mathbb{R}$ be an interval with more than one point and let $a \in I$. For $n \in \mathbb{N}^*$, let

$$T_{a,n} : C^{n-1}_K(I) \to K[t]_n$$

be the map which maps every function $f \in C^{n-1}_K(I)$ to its Taylor-polynomial of degree $< n$ of f at a, i.e.,

$$f \mapsto T_{a,n}(f) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (t-a)^k.$$

Show that $T_{a,n}$ is K-linear2. Determine the kernel and prove that the map $T_{a,n}$ is surjective. (Hint: For every sequence $a_n, n \in \mathbb{N}$ of real or

1 C^{n-1}_K is set of all $n-1$ times differentiable functions

2 $f^{(k)}$ means f is differentiated k times
complex numbers, there exists an infinitely many times differentiable function f on \mathbb{R} with values in \mathbb{R} (resp. \mathbb{C}) such that for all $n \in \mathbb{N}, f^n(0) = a_n$ \hfill (6)
1. Let \mathbb{R} denote the field of real numbers. Determine whether the following maps are \mathbb{R}-linear:

 (a) $f : \mathbb{R}^2 \to \mathbb{R}^2$ with $f(x_1, x_2) := (x_1^2, x_2)$.
 (b) $f : \mathbb{R}^2 \to \mathbb{R}^2$ with $f(x_1, x_2) := (x_1 + 1, 0)$.
 (c) $f : \mathbb{R}^2 \to \mathbb{R}^2$ with $f(x_1, x_2) := (x_1 + x_2, x_1)$.
 (d) $f : \mathbb{R}^3 \to \mathbb{R}^2$ with $f(x_1, x_2, x_3) := (|x_1 - x_2|, x_3)$.
 (e) $f : \mathbb{R}^3 \to \mathbb{R}^2$ with $f(x_1, x_2, x_3) := (3x_1 + 2x_2, x_1 + x_3)$.

2. Give examples of two endomorphisms f and g of an infinite dimensional vector space such that

 (a) f is injective, but not surjective.
 (b) g is surjective, but not injective.

3. Let V be a finite dimensional K-vector space and let U, W be subspaces of V of equal dimension. Then there exists a K-automorphism f of V such that $f(U) = W$.

4. Let $f : V \to W$ be a homomorphism of finite dimensional K-vector spaces. Show that

 (a) f is injective if and only if there exists a homomorphism $g: W \to V$ such that $g \circ f = \text{id}_V$.
 (b) f is surjective if and only if there exists a homomorphism $h: W \to V$ such that $f \circ h = \text{id}_W$.

5. Let V be a finite dimensional K-vector space and let $f : V \to V$ be an endomorphism of V. Show that the following statements are equivalent

 (a) f is not an automorphism of V.
 (b) There exists an K-endomorphism $g \neq 0$ of V such that $g \circ f = 0$.
 (c) There exists an K-endomorphism $h \neq 0$ of V such that $f \circ h = 0$.
