Linear Algebra: Exercise 3 - to be submitted
Maximum marks: 20

1. Let x_1, \ldots, x_n be a basis of the K-vector space V and let $a_{ij} \in K$, $1 \leq i \leq j \leq n$. Show that

$$y_1 = a_{11}x_1, \ y_2 = a_{12}x_1 + a_{22}x_2, \ldots, \ y_n = a_{1n}x_1 + a_{2n}x_2 + \cdots + a_{nn}x_n$$

is a basis of V if and only if $a_{11} \cdots a_{nn} \neq 0$. – (10 marks).

2. Let K be a field and let $K[X]$ (respectively, $K[X]_m$, $m \in \mathbb{N}$) be the K-vector space of all polynomials (respectively, polynomials of degree $< m$) with coefficients in K. Let $f_n \in K[X]$, $n \in \mathbb{N}$, be a sequence of polynomials with $\deg f_n \leq n$ for all $n \in \mathbb{N}$. Show that for every $m \in \mathbb{N}$, f_0, \ldots, f_{m-1} is a K-basis of the subspace $K[X]_m$ if and only if $\deg f_n = n$ for all $n = 0, \ldots, m - 1$. (Hint: Use question 1. – (10 marks)
1. Let \(V \) be a vector space over a field \(K \).

 (a) If \(V \) has a finite generating system, then every generating system of \(V \) has a finite generating system.

 (b) If \(v_i, i \in I \), is a generating system for \(V \), then every maximal linearly independent subsystem of \(v_i, i \in I \), is a basis of \(V \).

2. Determine which of the following systems of functions are linearly independent over \(\mathbb{R} \) in the \(\mathbb{R} \)-vector space \(\mathbb{R}^\mathbb{R} \) of all functions:

 (a) 1, \(\sin t \), \(\cos t \).

 (b) \(\sin t \), \(\cos t \), \(\sin(\alpha + t) \) (\(\alpha \in \mathbb{R} \) fixed).

 (c) \(t \), \(|t| \), \(\text{Sign} t \). (\(\text{Sign}(x) = 1 \) if \(x \geq 0 \), -1 otherwise)

 (d) \(e^t \), \(\sin t \), \(\cos t \).

3. Let \(x_1 = (a_{11}, \ldots, a_{1n}), \ldots, x_n = (a_{n1}, \ldots, a_{nn}) \) be elements of \(\mathbb{K}^n \) with

 \[|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ji}| \quad \text{for all } i = 1, \ldots, n. \]

 Show that \(x_1, \ldots, x_n \) are linearly independent over \(\mathbb{K} \). (**Hint**: Suppose that \(b_1 x_1 + \cdots + b_n x_n = 0 \). Then we can find \(b'_1, \ldots, b'_n \in \mathbb{K} \) such that \(|b'_i| \leq 1 \) for all \(i \) and \(b'_j = 1 \) for some \(j \). Then what happens to the given condition?)

4. Let \(\lambda_1, \ldots, \lambda_n \) be pairwise distinct elements in a field \(K \). Prove that the vectors \(x_1 := (1, \lambda_1, \lambda_1^2, \ldots, \lambda_1^{n-1}) \), \(\ldots \), \(x_n := (1, \lambda_n, \lambda_n^2, \ldots, \lambda_n^{n-1}) \) in \(K^n \) are linearly independent over \(K \). (**Hint**: Induction on \(n \). Assume the result for \(n - 1 \). Prove the result for \(n \), assume that \(a_1 x_1 + \cdots + a_n x_n = 0 \). Then we have the equations: \(a_1 \lambda_n x'_1 + \cdots + a_n \lambda_n x'_n = 0 \) and \(a_1 \lambda_1 x'_1 + \cdots + a_n \lambda_n x'_n = 0 \), and so \(a_1 (\lambda_n - \lambda_1) x'_1 + \cdots + a_{n-1} (\lambda_n - \lambda_{n-1}) x'_{n-1} = 0 \), where \(x'_i := (1, \lambda_i, \ldots, \lambda_i^{n-2}), i = 1, \ldots, n. \)
5. Let \(\lambda_1, \ldots, \lambda_n \) be pairwise distinct elements in a field \(K \). The vectors \(y_1 := (1,1,\ldots,1), y_2 := (\lambda_1,\lambda_2,\ldots,\lambda_n), \ldots, y_n := (\lambda_1^{n-1},\ldots,\lambda_n^{n-1}) \in K^n \) are linearly independent over \(K \) (and hence is a \(K \)-basis of \(K^n \)).

(Hint: Note that a representation \(b_1y_1 + \cdots + b_ny_n = 0 \) with \(b_1, \ldots, b_n \in K \) is equivalent with the system of equations \(b_1 + b_2\lambda_i + \cdots + b_n\lambda_i^{n-1} = 0 \), \(i = 1, \ldots, n \). Therefore the vectors \(x_i, \ i = 1, \ldots, n \), are solutions of the homogeneous system of linear equations \(b_1z_1 + \cdots + b_nz_n \). Since \(x_1, \ldots, x_n \) is a generating system of \(K^n \), the solution space of this equation is \(K^n \) which is possible only in the case \(b_1 = \cdots = b_n = 0 \).

Another Argument: The equations \(b_1 + b_2\lambda_i + \cdots + b_n\lambda_i^{n-1} = 0 \), \(i = 1, \ldots, n \), mean that the polynomial \(b_1 + b_2X + \cdots + b_nX^{n-1} \in K[X] \) of degree < \(n \) has \(n \) pairwise distinct zeros \(\lambda_1, \ldots, \lambda_n \in K \) and hence \(b_1 = \cdots = b_n = 0 \).)