Linear Algebra: Exercise 1 - to be submitted

Maximum marks: 20

In the following questions \(\mathbb{N} \) denotes the set of natural numbers, \(\mathbb{N}^* = \mathbb{N} \setminus \{0\} \), \(\mathbb{R} \) denotes the field of real numbers, \(\mathbb{C} \) denotes the field of complex numbers and \(\mathbb{K} \) is either equal to \(\mathbb{R} \) or \(\mathbb{C} \).

1. Let \(\mathcal{N} \subseteq \mathbb{N} \) be a submonoid \(\neq 0 \) of the additive monoid \(\mathbb{N} \) with the following property: If \(a, b \in \mathcal{N} \) and \(a \leq b \) then \(b - a \in \mathcal{N} \). Show that \(\mathcal{N} = \mathcal{N}_n = \{an \mid a \in \mathbb{N}\} \) for some uniquely determined \(n \in \mathbb{N}^* := \mathbb{N} \cap \mathbb{N}^* \). – (10 marks)

2. A function \(f : \mathbb{R} \rightarrow \mathbb{K} \) is called even (respectively, odd) if \(f(-x) = f(x) \) (respectively, \(f(-x) = -f(x) \)) for all \(x \in \mathbb{R} \). For example, the sine \(\sin : \mathbb{R} \rightarrow \mathbb{R} \) (respectively, cosine \(\cos : \mathbb{R} \rightarrow \mathbb{R} \)) function is an odd (respectively, even) function.

(a) Show that \(\mathbb{K}^\mathbb{R} \) is a vector space. – (4 marks)

(b) Show that the set \(W_{\text{even}} \) (resp. \(W_{\text{odd}} \)) of all even (resp. odd) functions \(\mathbb{R} \rightarrow \mathbb{K} \) is a \(\mathbb{K} \)-subspace of \(\mathbb{K}^\mathbb{R} \). – (6 marks)
Practice Problems 1 - not to be submitted

In the following questions \(\mathbb{R} \) denotes the field of real numbers and \(\mathbb{C} \) denotes the field of complex numbers.

1. For \(a, b \in \mathbb{R} \), let \(f_{a,b} : \mathbb{R} \to \mathbb{R} \) be the function defined by \(f_{a,b}(x) := ax + b \), \(x \in \mathbb{R} \). Show that \(A := \{ f_{a,b} \mid a, b \in \mathbb{R}, a \neq 0 \} \) with the composition of functions as a binary operation is a non-commutative group.

2. Let \(n \) be a positive integer greater than 2. Show that \((\mathbb{Z}_n, +, n, \cdot n)\) is not a field when \(n \) is not a prime number.

3. Let \(V \) be a vector space over a field \(K \). For arbitrary elements \(p, q \in K \) and arbitrary vectors \(x, y \in V \), prove that

 (a) \(0 \cdot x = p \cdot 0 = 0 \).
 (b) \(p(-x) = (-p)x = -(px) \).
 (c) \((-p)(-x) = px \).
 (d) \(p(x - y) = px - py \) and \((p - q)x = px - qx \).

4. For subspaces \(U, U', W, W' \) of a vector space \(V \) over a field \(K \), show that:

 (a) \(U + (U' \cap W) \subseteq (U + U') \cap (U + W) \).
 (b) \(U \cap (U' + W) \supseteq (U \cap U') + (U \cap W) \).
 (c) If \(U \subseteq U' \), then \(U + (U' \cap W) = U' \cap (U + W) \).
 (d) If \(U \cap W = U' \cap W' \), then \(U = (U + (W \cap U')) \cap (U + (W \cap W')) \).

5. Let \(V \) be a vector space over a field \(K \) and let \(X \) be any set with a bijection \(f : X \to V \). Then \(X \) has a \(K \)-vector space structure with \(f^{-1}(0) \) as the zero element and for \(a \in K, x, y \in X \), \(x + y := f^{-1}(f(x) + f(y)) \) and \(a \cdot x := f^{-1}(af(x)) \).

6. Let \(X \) be a non-empty set and \(D \subset X \). Consider the set of functions \(S := \{ f : X \to \mathbb{C} \mid f(x) = 0, \forall x \in D \} \). Show that \(S \) is a \(\mathbb{C} \)-subspace of the vector space \(\mathbb{C}^X \) of all \(\mathbb{C} \)-valued functions on \(X \).