Unit 2 - Week 1

Assignment 1

The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

1. Let \(f(z) = \frac{1}{z} \). Consider the following statements:
 - (a) \(f(z) \) is continuous for all \(z \).
 - (b) \(f(z) \) is not differentiable at any point \(z \).
 - (c) \(f(z) \) is not continuous at any point \(z \).
 - (d) \(f(z) \) is not differentiable at any point \(z \).
 - (e) \(f(z) \) is not continuous at any point \(z \).

2. Let \(f(z) = \frac{1}{z} \). Consider the following statements:
 - (a) \(f(z) \) is continuous for all \(z \).
 - (b) \(f(z) \) is not differentiable at any point \(z \).
 - (c) \(f(z) \) is not continuous at any point \(z \).
 - (d) \(f(z) \) is not differentiable at any point \(z \).
 - (e) \(f(z) \) is not continuous at any point \(z \).

3. Let \(f(z) = \frac{1}{z} \). Consider the following statements:
 - (a) \(f(z) \) is continuous for all \(z \).
 - (b) \(f(z) \) is not differentiable at any point \(z \).
 - (c) \(f(z) \) is not continuous at any point \(z \).
 - (d) \(f(z) \) is not differentiable at any point \(z \).
 - (e) \(f(z) \) is not continuous at any point \(z \).

Due on 2019-02-13, 23:59 IST.
Consider the vector field \(F(x, y) = \text{tor}(1, 2) \): By recognizing the corresponding complex function \(F(x, y) = x + 2iy \), a complex potential \(G(x) \) for the vector field is

\[
G(x) = \int F(x) \, dx = x + 2iy + c
\]

No, the answer is incorrect.

1 point

Consider the vector field \(F(x, y) = \text{tor}(1, 2) \): By recognizing the corresponding complex function \(F(x, y) = 2x - 3iy \), a complex potential \(G(x) \) for the vector field is

\[
G(x) = \int F(x) \, dx = 2x - 3iy + c
\]

No, the answer is incorrect.

1 point

Consider the vector field \(F(x, y) = \text{tor}(1, 2) \): By recognizing the corresponding complex function \(F(x, y) = -y - 1z \), a complex potential \(G(x) \) for the vector field is

\[
G(x) = \int F(x) \, dx = -y - 1z + c
\]

No, the answer is incorrect.

1 point