Week 8 Assignment

The due date for submitting this assignment has passed. Due on 2019-03-27, 23:59 IST.
As per our records you have not submitted this assignment.

1) The dynamical system \(\dot{z} = Az + Bu \) equivalent to the differential equation \(x''(t) + ax'(t) + bx(t) = \gamma w(t) \), 1 point

- \(\gamma \neq 0 \), \(a \) and \(b \) are any real numbers
- \(\alpha \), \(\beta \) and \(\gamma \) are any real numbers
- \(a \neq 0 \), \(b \neq 0 \) and \(\gamma \) is any real number
- \(a \), \(\beta \) or \(\gamma \) must be nonzero

No, the answer is incorrect.
Score: 0

Accepted Answers:
- \(\gamma \neq 0 \), \(a \) and \(b \) are any real numbers

2) If \(\dot{y} = Cy + du \) is the companion form of the system \(\dot{z} = Az + Bu \).

Then which of the following is not true

- \(A \) and \(C \) are similar
- The system is controllable
- \(A \) and \(C \) may not be similar
- Eigenvalues of \(A \) and \(C \) are same

No, the answer is incorrect.
Score: 0

Accepted Answers:
- \(A \) and \(C \) may not be similar

3) Consider the system \(\dot{z} = Az + bu \), \(z(0) = x_0 \), where \(A = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \), \(b = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \).

If the companion form of the above system is \(\dot{y} = Cy + du \), then the matrices \(C \) and \(d \) are

- \(C = \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix} \), \(d = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \)
- \(C = \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix} \), \(d = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \)
- \(C = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \), \(d = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \)
- \(C = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} \), \(d = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \)

No, the answer is incorrect.
Score: 0

Accepted Answers:
- \(C = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} \), \(d = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \)

Due on 2019-03-27, 23:59 IST.
9) The dynamical system \(\dot{x}_1 = x_2 \) \(\dot{x}_2 = 2x_2 + kx_1 \) where \(k \) is a real number, is

- asymptotically stable if \(k < 0 \)
- stable if \(k < -\sqrt{2} \)
- unstable for all \(k \)
- stable for all \(k \)

No, the answer is incorrect.

Score: 0

Accepted Answers:

unstable for all \(k \)

6) The system \(\dot{x} = 4x + ku \) is asymptotically stable at \(x = 0 \) if

- \(k \neq 0 \) and \(u = x \)
- \(k > 4 \) and \(u = 2x \)
- \(k < -4 \) and \(u = x \)
- \(k = 4 \) and \(u = -x \)

No, the answer is incorrect.

Score: 0

Accepted Answers:

\(k < -4 \) and \(u = x \)

7) The system \(\dot{x}(t) = Ax(t) + Bu(t) \) with observation \(y(t) = Cx(t) \) where

\[
A = \begin{bmatrix} 1 & -1 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}
\]

- observable but not controllable
- both observable and controllable
- neither observable nor controllable
- controllable but not observable

No, the answer is incorrect.

Score: 0

Accepted Answers:

both observable and controllable

8) Choose the incorrect statement. The control system \(\dot{x} = Ax + Bu \) along with the observation \(y(t) = Cx(t) \)

- is said to be observable if
- the knowledge on the input \(u(t) \) and the observation \(y(t) \) for \([t_0, T]\) is sufficient to determine the initial state \(x(t_0) \)
- the observable Gramian matrix is nonsingular
- the dual system is controllable
the system is controllable

No, the answer is incorrect.

Accepted Answers:
the system is controllable

9) The feedback control \(u = Kx \) for the system \(\dot{x} = Ax + Bu \) where \(x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \),

\[
A = \begin{bmatrix} 2 & 4 \\ 0 & 5 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
\]

such that \(A + BK \) has the eigenvalues \(\{-2, -3\} \) is

- \(-20x_1 + 5x_2 \)
- \(20x_1 + 8x_2 \)
- \(-20x_1 + 8x_2 \)
- \(-20x_1 - 8x_2 \)

No, the answer is incorrect.

Score: 0

Accepted Answers:
\(-20x_1 + 8x_2 \)

10) The system \(\dot{z}(t) = Ax(t) + Bu(t) \), where \(A = \begin{bmatrix} 2 & 2 & 3 \\ 1 & 3 & 3 \\ -1 & -2 & -2 \end{bmatrix} \), \(B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \) is controllable if \(f \) the system \(\dot{z}(t) = Jz \)

(\(z = P^{-1}x \)) is controllable, where \(D = P^{-1}B \) and \(J = P^{-1}AP \) the Jordan canonical form of \(A \) is

- \(J = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \)
- \(J = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \)
- \(J = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \)
- \(J = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \)

No, the answer is incorrect.

Score: 0

Accepted Answers:
\(J = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \)