

1 of 3

```
Accepted Answers:
    \frac{\partial(f,g)}{\partial(x,p)} + \frac{\partial(f,g)}{\partial(y,q)} = 0
  {\it 6)}\ \ Consider the partial differential equations
      z=px+qy (1)
      z^2 = xyp + yzq (2)
      zx + xyp + yzq = 0 (3)
    \stackrel{-}{PDE} (1) is compatible with PDE (2) but not with PDE (3)
    \overrightarrow{PDE} (1) is compatible with PDE (3) but not with PDE (2)
    PDE\left(1\right) is compatible with both PDE\left(2\right) and PDE\left(3\right)
    PDE\ (1)\ is\ compatible\ with\ neither\ PDE\ (2)\ nor\ with\ PDE\ (3).
  PDE\ (1)\ is\ compatible\ with\ both\ PDE\ (2)\ and\ PDE\ (3)
  7) Consider the partial differential equations
                                                                                                                                                     1 point
      p^2 + q^2 = 1 (1)
      (p^2+q^2)y=pz\quad (2)
      Then
    PDE\left(1\right) and \left(2\right) are not compatible
     PDE (1) and (2) are compatible and a common solution is \sqrt{2}z=x+y
     PDE (1) and (2) are compatible and a common solution is z^2 = x^2 - (y+c)^2
     PDE (1) and (2) are compatible and a common solution is z^2 = (x+y)^2 + c_1
  Score: 0
  Accepted Answers:
  PDE(1) and (2) are not compatible
  8) Complete integral of the equation p^2x + q^2y = z is
                                                                                                                                                     1 point
    z=(\sqrt{x}+a)^2+(\sqrt{y}+b)^2
     (z+\sqrt{a}x)^2=(\sqrt{y}-b)^2
     (z-\sqrt{xy})^2=(\sqrt{y}-\sqrt{x})^2
    none of these.
   Score: 0
  Accepted Answers:
   z = (\sqrt{x} + a)^2 + (\sqrt{y} + b)^2
The envelope of the one parameter subsystem obtained by taking b=-\frac{a}{\lambda}-\frac{\mu}{1+\lambda} in the complete integral z=\sqrt{2x+a}+\sqrt{2y+b} of the
    z+\mu=2igg(1+rac{1}{\lambda}\,igg)(x+\lambda\,y)
    z^2+\mu=(1+\lambda)(x+\lambda^{-1}\;y)
    z^2^- + \mu = 2(1+\lambda)(x+\lambda^{-1}y)
    z^2 + \mu = 2\left(1 + rac{1}{\lambda}\right)(x + \lambda y)
  No, the answer is incorrect.
  Score: 0
  Accepted Answers:
  z^2 + \mu = 2\left(1 + \frac{1}{\lambda}\right)(x + \lambda y)
  10) The envelope of the one parameter subsystem obtained by taking b = k + ah in the complete integral
                                                                                                                                                     1 noint
      z+a^2x=axy+bx^2
      of the PDE is
      2xz+q^2=x(xp+Yq)
      is
```

 $https://online courses.nptel.ac.in/noc18_ma10/un...$

