

reviewer3@nptel.iitm.ac.in ▼

Courses » Ordinary and Partial Differential Equations and Applications

Announcements Course Ask a Question Progress Mentor FAQ

Unit 5 - Week 4

Course outline	Assignment 4	
How to access the portal	The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.	59 IST.
Week 1	1) Consider the differential equations	1 poin
Veek 2	$egin{align} t^3y^{''} + (\sin t^2)y^{'} + ty &= 0 \ t^3y^{''} + (\sin t)y^{'} + ty &= 0 \ t^3y^{''} &= 0 \ t^3y$	
Veek 3	$t \cdot y + (\sin t)y + ty = 0$ (2) Then the point $t = 0$ is	
/eek 4		
Regular singular	An ordinary point for both the equations	
points-I Regular singular points-II	A regular singular point of (1) but not of (2)	
Regular singular points-III	$A\ irregular\ singular\ point\ for\ both\ the\ equations$	
Regular singular points-IV	A regular singular point of (2) but not of (1)	
Regular singular points-V	No, the answer is incorrect. Score: 0	
Quiz : Assignment	Accepted Answers: A regular singular point of (1) but not of (2)	
Solution of Assignment 4	Consider the differential equation $t(t-1)^2(t+3)x^{''}+t^2x^{'}-(t^2+t-1)x=0$. Then	1 poin
Veek 5		
Veek 6	$Points \ t=0, \ t=1 \ and \ t=-3 \ all \ are \ regular \ singular \ points$	
Veek 7	$Only\ point\ t=0\ is\ a\ regular\ singular\ point$	
Veek 8	$Only\ point\ t=1\ is\ a\ regular\ singular\ point$	
Veek 9		
Veek 10	$Points\ t=0\ and\ t=-3\ are\ regular\ singular\ points$ No, the answer is incorrect.	
Veek 11	Score: 0	
Veek 12	Accepted Answers: $Points\ t=0\ and\ t=-3\ are\ regular\ singular\ points$	
VEEKLY	$^{3)}$ The solution of the differential equation $t^2y^{''}+3ty^{'}+y=0$ with $y(1)=0$ and $y(e)=1$ is	1 poin

A project of

National Programme on Technology Enhanced Learning

In association with

Funded by

Government of India

Ministry of Human Resource Development

Powered by

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

$$y(t) = e^2 t \ln t$$

None of these

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$y(t) = \frac{e}{t} \ln t$$

4) Consider the differential equation $2ty^{''} + y^{'} + ty = 0, \ 0 < t < \infty,$ then the recurrence relation to obtain Frobenius series solution

1 point

$$y(t)=t^r\sum_{n=0}^{\infty}a_nt^n\;is$$

For $r=0,\ n(2n+1)a_n+a_{n-2}=0,\ n\geq 2$

For $r=rac{1}{2}\ ,\ n(2n-1)a_n+a_{n-2}=0,\ n\geq 2$

For r = 1, $n(2n-1)a_n + a_{n-2} = 0$, $n \ge 2$

For $r=\frac{1}{2}$, $n(2n+1)a_n+a_{n-2}=0, n\geq 2$

No, the answer is incorrect.

Accepted Answers:

For $r = \frac{1}{2}$, $n(2n+1)a_n + a_{n-2} = 0$, $n \ge 2$

1 point

5) Consider the differential equation $2t^2y^{''} + t(2t+1)y^{'} - y = 0$. Then differential equation has

 $only\ one\ Frobenius\ series\ solution$

 $two\ Frobenius\ series\ solutions\ and\ one\ of\ the\ Frobenius\ series\ solution\ is$ given by $y(t) = t^{-1/2} \left[1 - \frac{2}{5} t + \frac{4}{35} t^2 - \ldots \right]$

 $two\ Frobenius\ series\ solutions\ and\ one\ of\ the\ Frobenius\ series$ solution is given by $y(t) = t[1 - t + \frac{1}{2}t^2 - \ldots]$

 $two\ Frobenius\ series\ solutions\ and\ one\ of\ the\ Frobenius\ series\ solution$ is given by $y(t)=[t-rac{2}{5}\,t^2+rac{4}{35}\,t^3-\ldots]$

No, the answer is incorrect.

Score: 0

Accepted Answers:

two Frobenius series solutions and one of the Frobenius series solution is given by $y(t) = [t - \frac{2}{5}t^2 + \frac{4}{35}t^3 - \ldots]$

6) Consider the differential equation $t^2y^{''} + (3t - t^2)y^{'} - ty = 0$. Then

1 point

roots of the indicial equation differ by a positive integer and only one Frobenius series solution exist

roots of the indicial equation differ by a positive integer and $both\ Frobenius\ series\ solutions\ exist$

roots of the indicial equation differ by a positive integer and only one Frobenius series solution exist and is given by

$$y(t)=t[1-t+rac{1}{2}\,t^2-\ldots]$$

roots of the indicial equation differ by a positive integer and both Frobenius series solutions exist and one of the solution is given by $y(t) = t[1-t+\frac{1}{2}t^2-\ldots]$

No, the answer is incorrect.

Score: 0

Accepted Answers:

roots of the indicial equation differ by a positive integer and both Frobenius series solutions exist

7) Consider the differential equation $t^2y^{''}+(t^2-3t)y^{'}+3y=0$. Then

1 point

 $\stackrel{-}{roots}$ of the indicial equation are 1 and 2

 $roots\ of\ the\ indicial\ equation\ are\ 0\ and\ 3$

roots of the indicial equation differ by a positive integer and has only one Frobenius series solution exist and is given by $y(t) = t^3 e^{-t}$

roots of the indicial equation differ by a positive integer and has two Frobenius series solutions and one of the solution is given by $y(t) = te^{-t}$

No. the answer is incorrect.

Score: 0

Accepted Answers:

roots of the indicial equation differ by a positive integer and has only one Frobenius series solution exist and is given by $y(t)=t^3e^{-t}$

8) Consider the differential equation $(t-t^2)y^{''}+(1-5t)y^{'}-4y=0$. Then

1 point

Roots of the indicial equation are unequal

 $Roots\ of\ the\ indicial\ equation\ are\ equal\ and\ one\ of\ the\ solution\ is$

$$given \ as \ y(t) = \sum_{n=0}^{\infty} n^2 t^n$$

Recurrence relation to find the coefficients $\{a_n\}'s$ is $a_n=rac{(k+n)^2}{(k+1)^2}\,a_{n-1}$

The general solution of the differential equation is given by $y(t) = c_1 y_1 + c_2 (y_1 \ln t - 2(2x + 6x^2 + 12x^3 + \dots)),$ where y_1 is Frobenius series solution of the given equation

No, the answer is incorrect.

Score: 0

Accepted Answers:

The general solution of the differential equation is given by $y(t) = c_1 y_1 + c_2 (y_1 \ln t - 2(2x + 6x^2 + 12x^3 + \dots)),$ where y_1 is Frobenius series solution of the given equation

9)

1 point

 $Consider\ the\ differential\ equation\ (x-x^2)y^{''}+(1-x)y^{'}-y=0\ near\ 0\ and\ let\ its\ Frobenius$

solution is given as $y(x) = \sum_{n=0}^{\infty} a_n x^{n+r}$. Then

$$y(x)=aigg(1+x+rac{1}{3}\ x^2+rac{10}{36}\ x^3+\dotsigg),\ where\ a\ is\ constant.$$

Roots of the indicial equation differs by a positive integer.

it has only one Frobenius series solution and is given by

$$y(x) = a igg(1 + x + rac{1}{2} \, x^2 + rac{1}{15} \, x^3 + \dots igg)$$

The general solution of the differential equation is given by

$$y(x)=a\ln xigg(1+x+rac{1}{2}\,x^2+rac{10}{36}\,x^3+\dotsigg)+b(-2x-x^2-\dots), \ where \ a \ and \ b \ are \ constants$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

The general solution of the differential equation is given by

$$y(x)=a\ln xigg(1+x+rac{1}{2}\,x^2+rac{10}{36}\,x^3+\dotsigg)+b(-2x-x^2-\dots), \ where \ a \ and \ b \ are \ constants.$$

 $^{10)}$ The solution of the initial value problem $t^2y^{''}-ty^{'}-2y=0,\ y(1)=0$ and $y^{'}(1)=1$ on the interval $0< t<\infty$ is

1 point

n.

$$rac{t}{2\sqrt{3}}\left(t^{\sqrt{3}}+rac{1}{t^{\sqrt{3}}}-2
ight)$$

$$rac{t}{2\sqrt{3}}\left(t^{\sqrt{3}}-rac{1}{t^{\sqrt{3}}}
ight)$$

$$rac{1}{2\sqrt{3}}\left(t^{\sqrt{3}}-rac{1}{t^{\sqrt{3}}}
ight)$$

$$rac{1}{2\sqrt{3}}\left(t^{\sqrt{3}}+rac{1}{t^{\sqrt{3}}}-2
ight)$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$rac{t}{2\sqrt{3}}\left(t^{\sqrt{3}}-rac{1}{t^{\sqrt{3}}}
ight)$$

Previous Page

End