Week 3 Assessment

The due date for submitting this assignment has passed. **Due on 2018-02-14, 23:59 IST.**

Submitted assignment

1. **Let S be a subset of a finite dimensional vector space then which of the following statement is false?**

 - $S^\perp = \{S\}^\perp$
 - $\mathcal{L}(S) = S^{\perp\perp}$
 - $S^\perp = S^{\perp\perp}$
 - $\mathcal{L}(S) = S$

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 $\mathcal{L}(S) = S$

2. **Let $U = \{(x, y, 0) : x, y \in \mathbb{R}\}$ be a subspace of \mathbb{R}^3. Then U^\perp is equal to**

 - $\{(0, y, z) : z \in \mathbb{R}\}$
 - $\{(0, y, z) : y, z \in \mathbb{R}\}$
 - $\{(x, 0, z) : x, z \in \mathbb{R}\}$
 - $\{(x, y, z) : x + y + z = 0\}$

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 $\{(0, 0, z) : z \in \mathbb{R}\}$

3. **Let S be a subspace of \mathbb{R}^3 given by $S = \text{span}\{(1, 0, 0)\}$. Then S^\perp is equal to**

 - $\text{span}\{(1, 0, 0), (0, 1, 0)\}$
 - $\text{span}\{(1, 0, 0), (0, 0, 1)\}$
 - $\text{span}\{(0, 1, 0), (0, 0, 1)\}$
 - $\text{span}\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
No, the answer is incorrect.
Score: 0
Accepted Answers:

5) Let \(A : \mathbb{R}^3 \to \mathbb{R}^4 \), where \(A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & -3 \\ 1 & 3 & 4 \\ 1 & 4 & 5 \end{pmatrix} \) then the dimension of the image of \(A \) is given by

6) Let \(A : \mathbb{R}^3 \to \mathbb{R}^4 \), where \(A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & -3 \\ 1 & 3 & 4 \\ 1 & 4 & 5 \end{pmatrix} \) then the dimension of \(\ker(A) \) is

7) Let \(F : \mathbb{R}^4 \to \mathbb{R}^3 \) be the linear mapping defined by \(F(x, y, z, t) = (x - y + z + t, x + 2z - t, x + y + 3z - 3t) \) then the dimension of the image of \(F \) and the kernel of \(F \) are given by

8) Linearly independent eigenvectors corresponding to the eigen value \(\lambda = 0 \) of multiplicity of two of \(A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \)
9) Let \(A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \) then which of the following statements is false?

- The eigenvalues of \(A \) are 1, 1
- A linearly independent vector is \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \)
- \(A \) is non-singular
- \(A \) is diagonalizable

No, the answer is incorrect.
Score: 0
Accepted Answers:
\{ (1, 0, -1)^T, (1, -1, 0)^T \}

10) Two matrices are similar if

- they have the same eigenvalues
- they have the same determinant
- they have the same trace
- they represent the same linear operator

No, the answer is incorrect.
Score: 0
Accepted Answers:
they represent the same linear operator

11) Let \(A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \). Then which of the following statements is false?

- \(A \) is non-singular
- \(A \) is diagonalizable over the field of real numbers \(\mathbb{R} \)
- The characteristic equation of \(A \) has no roots in \(\mathbb{R} \)
- The characteristic polynomial of \(A \) is \(\lambda^2 - 2\lambda + 2 \)

No, the answer is incorrect.
Score: 0
Accepted Answers:
A is diagonalizable over the field of real numbers \(\mathbb{R} \)

12) Let \(A = \begin{pmatrix} 7 & 3 \\ 3 & -1 \end{pmatrix} \). Then an orthogonal matrix \(P \) which diagonalizes \(A \) is given by

\(\begin{pmatrix} 3 & 1 \\ 1 & -3 \end{pmatrix} \)
No, the answer is incorrect.
Score: 0
Accepted Answers:
\[
\begin{pmatrix}
\frac{3}{10} & \frac{1}{\sqrt{10}} \\
\frac{1}{\sqrt{10}} & -\frac{3}{10}
\end{pmatrix}
\]