Week 1: Assignment 1

The due date for this assignment has passed.

As per our records you have not submitted this assignment.

Due on 2021-09-10, 23:59 IST.

1. Let \(f(x) = x^2 + 3x - 4 \) be a function that satisfies the three conditions in the definition of a limit. Then

\(f(x) \) is always a metric space.

\(f(x) \) covers an open metric space but \((f(x), \mathbb{R}) \) is not a metric space.

It is possible that neither \((f(x), \mathbb{R}) \) nor \((f(x), \mathbb{R}) \) is a metric space.

Both \((f(x), \mathbb{R}) \) and \((f(x), \mathbb{R}) \) are metric spaces.

No, the statement is incorrect.

Accrued points: 1

2. Let \(S \) be a metric space. Which of the statements are true?

\(S \) is always a metric space.

Both \((S, \mathbb{R}) \) and \((S, \mathbb{R}) \) are metric spaces.

\(S \) is not always a metric space.

\((S, \mathbb{R}) \) is always a metric space.

No, the statement is incorrect.

Accrued points: 1

3. Let \(S \) be a metric space. Which of the statements are true?

\(S \) has a complete metric space.

\(S \) is not a complete metric space.

\(S \) is a complete metric space.

\(S \) is always a metric space.

No, the statement is incorrect.

Accrued points: 1

4. Let \(f(x) \) be a metric space. Mark the true statements

There always exists a continuous function \(f: X \to Y \) where \(Y \) is any other metric space.

If the metric on \(X \) is the discrete metric then any function \(f: X \to Y \) where \(Y \) is any metric space is continuous.

If \(Y = \mathbb{R} \) the discrete metric then no function \(f: X \to Y \) is continuous.

If \(Y = \mathbb{R} \) is continuous then \(Y = \mathbb{R} \) is a metric space then \(Y \) is not continuous if the metric on both \(X \) and \(Y \) are changed to some other equivalent metrics.

No, the statement is incorrect.

Accrued points: 1

5. Continuity of functions between metric spaces can be characterized using which of the following?

Open sets

Closed sets

Sequences

None of the above

No, the statement is incorrect.

Accrued points: 1

6. Which of the following about closed and open balls in a metric space are true? Here by closed ball we mean the set of the form

\[B(r, x) = \{ y \in X \mid d(x, y) \leq r \} \]

- Any open set is a union of open balls
- Any closed set is a finite union of closed balls
- The closure of the union of all balls of radius \(r \) is the union of all balls of radius \(r \)

No, the statement is incorrect.

Accrued points: 1

7. In which of the following the metric or \(g \) satisfies the distance 1 property?

- Euclidean metric
- The discrete metric
- The uniform metric

No, the statement is incorrect.

Accrued points: 1

8. In which of the following the matrix or \(B \) does the sequence \(B^n \) converge to \(I \)?

- Euclidean metric
- The discrete metric
- The uniform metric

No, the statement is incorrect.

Accrued points: 1

9. Which of the following subspaces of \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \) cannot possibly be the range of this function?

\[f(x) = x^2 + 3x - 4 \]

\[\mathbb{R} \]

\[\mathbb{R}^2 \]

\[\mathbb{R}^3 \]

No, the statement is incorrect.

Accrued points: 1

10. Let \(f(x) \) be a metric space and consider the function \(g(y) = \begin{cases} 1 & \text{if } y = 0 \\ 0 & \text{otherwise} \end{cases} \) defined by

\[g(y) = \begin{cases} 1 & \text{if } y = 0 \\ 0 & \text{otherwise} \end{cases} \]

\[\lim_{y \to 0} g(y) = 0 \]

\[\lim_{y \to 0} g(y) = 1 \]

No, the statement is incorrect.

Accrued points: 1

11. Let \(f(a) \) be a given point. When the following set \(S \) is not the open unit ball centered at \(a \) under this norm?

\[\{ x \in \mathbb{R} \mid d(x, a) < 1 \} \]

\[\{ x \in \mathbb{R} \mid d(x, a) < 1 \} \]

\[\{ x \in \mathbb{R} \mid d(x, a) < 1 \} \]

No, the statement is incorrect.

Accrued points: 1

12. Let \(f(a) \) be a given point. Which of the following set \(S \) is the open unit ball centered at \(a \) under this norm?

\[\{ x \in \mathbb{R} \mid d(x, a) < 1 \} \]

\[\{ x \in \mathbb{R} \mid d(x, a) < 1 \} \]

\[\{ x \in \mathbb{R} \mid d(x, a) < 1 \} \]

No, the statement is incorrect.

Accrued points: 1

13. Let \(f(a) \) be a given point. Which of the following set \(S \) is the unit circle centered at \(a \) under this norm?

\[\{ x \in \mathbb{R} \mid d(x, a) < 1 \} \]

\[\{ x \in \mathbb{R} \mid d(x, a) < 1 \} \]

\[\{ x \in \mathbb{R} \mid d(x, a) < 1 \} \]

No, the statement is incorrect.

Accrued points: 1

14. Let \(f(a) \) be a given point. Which of the following set \(S \) is the unit circle centered at \(a \) under this norm?

\[\{ x \in \mathbb{R} \mid d(x, a) < 1 \} \]

\[\{ x \in \mathbb{R} \mid d(x, a) < 1 \} \]

\[\{ x \in \mathbb{R} \mid d(x, a) < 1 \} \]

No, the statement is incorrect.

Accrued points: 1