Assignment 7

1. Let \(f, g : X \rightarrow \mathbb{R} \) be two continuous functions on a compact set \(X \). Prove that \(f + g \) is a continuous function on \(X \).

2. Let \(A \) be an open set in \(\mathbb{R} \). Prove that \(A \cap \mathbb{Q} \) is a dense subset of \(A \).

3. For any \(x \in \mathbb{R} \), let \(f_n(x) = \frac{1}{n} \) for all \(n \geq 1 \). Prove that \(f_n \) converges uniformly to the function \(f(x) = 0 \) on \(\mathbb{R} \).

4. Let \(A \) be a bounded set in \(\mathbb{R} \). Prove that \(A \) has a maximum and a minimum.

5. Find the volume of the solid obtained by revolving the region bounded by the curves \(y = x^2 \) and \(y = 4 - x^2 \) about the \(y \)-axis.

6. Evaluate the definite integral \(\int_0^\infty e^{-x^2} \, dx \).

7. Let \(f : [0, 1] \rightarrow \mathbb{R} \) be a continuous function. Prove that there exists a \(c \in [0, 1] \) such that\(f(c) = \frac{1}{2} \int_0^1 f(x) \, dx \).

8. Let \(f : [a, b] \rightarrow \mathbb{R} \) be a continuous function. Prove that there exists a \(c \in (a, b) \) such that \(f(c) = \frac{1}{b-a} \int_a^b f(x) \, dx \).

9. Let \(A \) be a nonempty, compact subset of \(\mathbb{R} \). Prove that \(A \) has a maximum and a minimum.

10. Let \(f : [a, b] \rightarrow \mathbb{R} \) be a continuous function. Prove that there exists a \(c \in (a, b) \) such that \(f(c) = \frac{1}{b-a} \int_a^b f(x) \, dx \).

11. Let \(X \) be a compact metric space. Prove that every continuous function \(f : X \rightarrow \mathbb{R} \) is uniformly continuous.

12. Let \(f : [a, b] \rightarrow \mathbb{R} \) be a continuous function. Prove that there exists a \(c \in (a, b) \) such that \(f(c) = \frac{1}{b-a} \int_a^b f(x) \, dx \).