Assignment 4

Due on 2021-02-17, 23:39 IST.

The due date for submitting this assignment has passed.

As per our notice, you have already submitted this assignment.

Point: 1

1. Let \(X = \{x \in \mathbb{R} : x^2 + 1 \neq 0\} \). Choose the correct option.
 - (A) It is the splitting field of \(x^2 + 1 \).
 - (B) It is the splitting field of \(x^2 + 1 \).
 - (C) It is the splitting field of \(x^2 + 1 \).
 - (D) It is the splitting field of \(x^2 + 1 \).

2. (A) Let \(A \) be an abelian group.
 (B) Let \(A \) be a finite abelian group.
 (C) Let \(A \) be a free abelian group.
 (D) Let \(A \) be a finitely generated abelian group.

3. Let \(G \) be a group and \(H \) be a normal subgroup of \(G \). Choose the correct options.
 - (A) \(G/H \) is a group.
 - (B) \(G/H \) is a normal subgroup of \(G \).
 - (C) \(G/H \) is a group.
 - (D) \(G/H \) is a finitely generated group.

4. Let \(k \) be a field.
 (A) \(k \) is a field.
 (B) \(k \) is a field.
 (C) \(k \) is a field.
 (D) \(k \) is a field.

5. Choose the correct options.
 - (A) \(x^2 + 1 \) is irreducible over \(\mathbb{Q} \).
 - (B) \(x^2 + 1 \) is irreducible over \(\mathbb{Q} \).
 - (C) \(x^2 + 1 \) is irreducible over \(\mathbb{Q} \).
 - (D) \(x^2 + 1 \) is irreducible over \(\mathbb{Q} \).

6. (A) Let \(K \) be a field.
 (B) Let \(K \) be an algebraically closed field.
 (C) Let \(K \) be a field.
 (D) Let \(K \) be a field.

7. Let \(K \) be a field.
 (A) \(K \) is a field.
 (B) \(K \) is a field.
 (C) \(K \) is a field.
 (D) \(K \) is a field.

8. Choose the correct option.
 - (A) \(\mathbb{Q} \) is a subfield of \(\mathbb{R} \).
 - (B) \(\mathbb{Q} \) is a subfield of \(\mathbb{R} \).
 - (C) \(\mathbb{Q} \) is a subfield of \(\mathbb{R} \).
 - (D) \(\mathbb{Q} \) is a subfield of \(\mathbb{R} \).

9. Let \(x \) be a real number, where \(x \in \mathbb{R} \). Consider the following two statements.
 (A) \(x^2 + 1 \) is an even integer.
 (B) \(x^2 + 1 \) is an odd integer.

10. Let \(K \) be a field.
 (A) \(K \) is a field.
 (B) \(K \) is a field.
 (C) \(K \) is a field.
 (D) \(K \) is a field.