Assignment 11

The due date for submitting this assignment has passed.

Due on 2021-07-04, 23:59 IST.

1. For numerical answers with decimal digits please real instructions on recording off. For boolean questions please answer Yes or No.

 a. Let x and y be two independent random variables, x and y. Then Z has density given by

 \[f_Z(z) = \begin{cases}
 0 & \text{if } 0 \leq z < 1, \\
 \frac{z}{2} & \text{if } 1 \leq z \leq 2, \\
 0 & \text{otherwise}.
 \end{cases} \]

 b. Let X and Y be two independent random variables and $Z = X + Y$. Then Z has density given by

 \[f_Z(z) = \begin{cases}
 \frac{1}{2} & \text{if } 0 \leq z < 1, \\
 \frac{1}{2} & \text{if } 1 \leq z \leq 2, \\
 0 & \text{otherwise}.
 \end{cases} \]

2. Let X and Y be two independent random variables and $Z = X - Y$. Then Z has density given by

 \[f_Z(z) = \begin{cases}
 \frac{1}{2} & \text{if } -1 \leq z < 0, \\
 \frac{1}{2} & \text{if } 0 \leq z \leq 1, \\
 0 & \text{otherwise}.
 \end{cases} \]

3. Let X and Y be two independent random variables and $Z = X + Y$. Then Z has density given by

 \[f_Z(z) = \begin{cases}
 \frac{1}{2} & \text{if } 0 \leq z < 1, \\
 \frac{1}{2} & \text{if } 1 \leq z \leq 2, \\
 0 & \text{otherwise}.
 \end{cases} \]

4. Let X and Y be two independent random variables and $Z = X - Y$. Then Z has density given by

 \[f_Z(z) = \begin{cases}
 \frac{1}{2} & \text{if } -1 \leq z < 0, \\
 \frac{1}{2} & \text{if } 0 \leq z \leq 1, \\
 0 & \text{otherwise}.
 \end{cases} \]

5. Let X and Y be two independent random variables and $Z = X + Y$. Then Z has density given by

 \[f_Z(z) = \begin{cases}
 \frac{1}{2} & \text{if } 0 \leq z < 1, \\
 \frac{1}{2} & \text{if } 1 \leq z \leq 2, \\
 0 & \text{otherwise}.
 \end{cases} \]

6. Let X and Y be two independent random variables and $Z = X - Y$. Then Z has density given by

 \[f_Z(z) = \begin{cases}
 \frac{1}{2} & \text{if } -1 \leq z < 0, \\
 \frac{1}{2} & \text{if } 0 \leq z \leq 1, \\
 0 & \text{otherwise}.
 \end{cases} \]

7. Let X and Y be two independent random variables and $Z = X + Y$. Then Z has density given by

 \[f_Z(z) = \begin{cases}
 \frac{1}{2} & \text{if } 0 \leq z < 1, \\
 \frac{1}{2} & \text{if } 1 \leq z \leq 2, \\
 0 & \text{otherwise}.
 \end{cases} \]

8. Let X and Y be two independent random variables and $Z = X - Y$. Then Z has density given by

 \[f_Z(z) = \begin{cases}
 \frac{1}{2} & \text{if } -1 \leq z < 0, \\
 \frac{1}{2} & \text{if } 0 \leq z \leq 1, \\
 0 & \text{otherwise}.
 \end{cases} \]

9. Let X and Y be two independent random variables and $Z = X + Y$. Then Z has density given by

 \[f_Z(z) = \begin{cases}
 \frac{1}{2} & \text{if } 0 \leq z < 1, \\
 \frac{1}{2} & \text{if } 1 \leq z \leq 2, \\
 0 & \text{otherwise}.
 \end{cases} \]

10. Let X and Y be two independent random variables and $Z = X - Y$. Then Z has density given by

 \[f_Z(z) = \begin{cases}
 \frac{1}{2} & \text{if } -1 \leq z < 0, \\
 \frac{1}{2} & \text{if } 0 \leq z \leq 1, \\
 0 & \text{otherwise}.
 \end{cases} \]