Assignment 7

The due date for submitting this assignment has passed.

Due on 2023-03-10, 23:59 IST.

As per our records you have not submitted this assignment.

In questions 1 to 5, let \(f(x) = (7 + x)(11 - 3x)^2 \).

1) The critical points of \(f(x) \) are 1 point
 - Only
 - 1/15 only
 - 1 and 1/15
 - Neither 1 nor 1/15
 No, the answer is incorrect. Score: 0
 Accepted Answers: 1 and 1/15

2) At \(x = 1 \), the function \(f(x) \) has 3 point
 - A local maximum but not an absolute maximum
 - A local maximum and an absolute maximum
 - No local maximum and an absolute maximum
 - Neither local maximum nor absolute maximum
 No, the answer is incorrect. Score: 0
 Accepted Answers: A local maximum and an absolute maximum

3) The function \(f(x) \) has 1 point
 - Maximum value of 16 and no minimum value
 - Minimum value of 0 and no maximum value
 - Maximum value of 16 and minimum value of 0
 - Neither a maximum value nor a minimum value
 No, the answer is incorrect. Score: 0
 Accepted Answers: Maximum value of 16 and no minimum value

In questions 4 to 5, let \(g(x) = \frac{5x + 4}{x^2 + 1} \).

4) If \(g(x) \) has a local extremum value of \(f \) at \(x = 3 \), then 5 point
 - \(a = -6, b = -10 \)
 - \(a = -6, b = 30 \)
 - \(a = 6, b = -30 \)
 - \(a = 6, b = 10 \)
 No, the answer is incorrect. Score: 0
 Accepted Answers: \(a = 6, b = -10 \)

5) The function \(g(x) \) has 1 point
 - Local minima at \(x = 3 \) and \(x = 1/3 \)
 - Local maximum at \(x = 3 \) and \(x = 1/3 \)
 - Local minimum at \(x = 3 \) and local maximum at \(x = 1/3 \)
 - Local maximum at \(x = 3 \) and local minimum at \(x = 1/3 \)
 No, the answer is incorrect. Score: 0
 Accepted Answers: Local maximum at \(x = 3 \) and local minimum at \(x = 1/3 \)

6) An isosceles triangle has its vertex at the origin and its base parallel to the x-axis with the vertex above the x-axis on the curve \(y = 2x^2 + 3x \). What is the largest area the triangle can have? 1 point
 - \(2\sqrt{37} \)
 - \(3\sqrt{2} \)
 - \(\sqrt{51} \)
 - \(6\sqrt{2} \)
 No, the answer is incorrect. Score: 0
 Accepted Answers: \(6\sqrt{2} \)

7) Consider determining the intervals on which the function \(f(x) = x^2 + 3x + 4 \) is increasing and/or decreasing. Which of the following 1 point holds?
 - \(f(x) \) is increasing on \((-\infty, -b/2a) \) and decreasing on \((-\infty, -b/2a) \)
 - \(f(x) \) is increasing on \((-\infty, -b/2a) \) and decreasing on \((-\infty, -b/2a) \)
 - \(f(x) \) is decreasing on \((-\infty, -b/2a) \) and decreasing on \((-\infty, -b/2a) \)
 - \(f(x) \) is decreasing on \((-\infty, -b/2a) \) and decreasing on \((-\infty, -b/2a) \)
 No, the answer is incorrect. Score: 0
 Accepted Answers: \(f(x) \) is increasing on \((-\infty, -b/2a) \) and decreasing on \((-\infty, -b/2a) \),