Assignment 7

The due date for submitting this assignment has passed.

Due on 2021-03-10, 23:59 IST.

1) Let \(r \) be a positive integer. Let \(F \) be a field such that the characteristic of \(F \) is either 0 or a prime number that doesn't divide \(r \). Let \(K \) be the splitting field of \(x^{n} - 1 \) over \(F \). Let \((Z/nZ)^{r} \) denote the multiplicative group of units modulo \(n \). Select all the statements which are always true.

- \(K/F \) is Galois.
- \(K/F \) is cyclic.
- \(K/F \) is abelian.

No, the answer is incorrect.
Score: 0
Accepted Answer: \(K/F \) is Galois.
\(K/F \) is abelian.

2) Let \(K \) be the splitting field of \(x^{15} - 1 \) over \(Q \). Select all the correct statements.

- \(\left[K : Q \right] = 6 \).

Let \(G \) be the Galois group of \(K/Q \). Then for every \(n \in G \), we have \(n^{15} = 1 \).

\(G \) contains an element of order 3.

There exists an intermediate field \(F \) for the extension \(K/Q \) such that \(K \) is a cyclic extension of \(F \) and \(\left[K : F \right] = 4 \).

No, the answer is incorrect.
Score: 0
Accepted Answer: \(\left[K : Q \right] = 6 \).
There exists an intermediate field \(F \) for the extension \(K/Q \) such that \(K \) is a cyclic extension of \(F \) and \(\left[K : F \right] = 4 \).

3) Select all the correct statements.

- Any Galois extension \(K/Q \) of degree 4 is radical.
- Any Galois extension \(K/Q \) of degree 4 is simple radical.

Let \(F \) be a field of characteristic 0 and let \(K/F \) be a Galois extension of degree 6. Then every element of \(K \) is solvable over \(F \).

Every abelian extension is simple radical.

No, the answer is incorrect.
Score: 0
Accepted Answer: Any Galois extension \(K/Q \) of degree 4 is radical.
Let \(F \) be a field of characteristic 0 and let \(K/F \) be a Galois extension of degree 6. Then every element of \(K \) is solvable over \(F \).

4) Let \(f \) be a polynomial of characteristic 0. Let \(K \) be the splitting field of \(f \) over \(Q \). Assume that \(\alpha \) is the degree of \(f \) and \(G \) is the Galois group of \(K/F \). Select all the correct statements.

- \(g \in F[x] \) if \(a, \beta \) are roots of \(g \in K \), then there exists an element \(\sigma \in G \) such that \(\sigma(a) = \beta \).
- \(g \in F[x] \) of \(F[x] \) is irreducible, \(a, \beta \) are roots of \(g \in K \), then there exists an element \(\sigma \in G \) such that \(\sigma(a) = \beta \).
- \(G \) is contained in the alternating group \(A_{\alpha} \).
- If the discriminant of \(f \) is a square in \(F \), then \(G \) is contained in the alternating group \(A_{\alpha} \).

No, the answer is incorrect.
Score: 0
Accepted Answer: \(g \in F[x] \) if \(a, \beta \) are roots of \(g \in K \), then there exists an element \(\sigma \in G \) such that \(\sigma(a) = \beta \).
If the discriminant of \(f \) is a square in \(F \), then \(G \) is contained in the alternating group \(A_{\alpha} \).

5) Select all the correct statements.

- If \(G \) is a solvable group then \(G \) is abelian.

- The symmetric group \(S_{\alpha} \) is solvable for every integer \(\alpha \).
Every group of order at most 10 is solvable.

Let \(f \in Q[x] \) be a polynomial of degree at most 4. Then \(f \) is solvable over \(Q \).

No, the answer is incorrect.
Score: 0
Accepted Answer: Every group of order at most 10 is solvable.
Let \(f \in Q[x] \) be a polynomial of degree at most 4. Then \(f \) is solvable over \(Q \).

6) Let \(f \in Q[x] \) be an irreducible quartic polynomial over \(Q \) of characteristic 0 field \(F \). Let \(D \in F \), \(g \in F[x] \) denote the discriminant and the resultant cubic of \(f \), respectively. Let \(K \) be the splitting field of \(f \) over \(F \). Select all the correct statements.

- If \(f \) splits completely in \(F \), then \(\left[K : F \right] = 2 \).
- If \(f \) splits completely in \(F \), then \(\left[K : F \right] = 4 \).
- If \(\left[K : F \right] = 12 \) then \(D \) is not a square in \(F \).

If \(K/F \) is a cyclic extension then \(D \) is not a square in \(F \).

No, the answer is incorrect.
Score: 0
Accepted Answer: If \(f \) splits completely in \(F \), then \(\left[K : F \right] = 4 \).
If \(K/F \) is a cyclic extension then \(D \) is not a square in \(F \).