Assignment 2

The due date for submitting this assignment has passed.

As per our records you have not submitted this assignment.

1) Let \(n \) be a positive integer and let \(C_n \) denote a cyclic group of order \(n \). Let \(Q, R \) denote the fields of rational numbers and real numbers, respectively. Select all the correct statements.

- The degree of \(C_n \) over \(Q \) is \(n \) for every positive integer \(n \).
- The degree of \(C_n \) over \(Q \) is \(p - 1 \) for every prime number \(p \).
- If \(C_n \subseteq R \) then \(n = 1 \) or \(n = 2 \).
- If \(C_n \) belongs to a field \(K \), then \(C_n \) also belongs to \(K \).

No, the answer is incorrect. Score: 0.

Accepted Answers:
- The degree of \(C_n \) over \(Q \) is \(p - 1 \) for every prime number \(p \).
- If \(C_n \subseteq R \) then \(n = 1 \) or \(n = 2 \).

2) Select all the correct statements. Let \(C \) denote the field of complex numbers. Let \(Z \) denote the ring of integers.

- If \(G \) is a cyclic group of order 10, then there are exactly 10 characters of \(G \) in \(C^* \).
- The symmetric group \(S_5 \) has exactly two characters in \(C^* \).
- The cyclic group \(Z/6Z \) has exactly 2 characters in \(C^* \).
- The Klein 4-group has exactly one character in \(C^* \).

No, the answer is incorrect. Score: 0.

Accepted Answers:
- If \(G \) is a cyclic group of order 10, then there are exactly 10 characters of \(G \) in \(C^* \).
- The symmetric group \(S_5 \) has exactly two characters in \(C^* \).

3) Let \(G \) denote the field of rational numbers. Let \(K = Q(\sqrt{2}, i) \) and let \(G \) denote the group of all field homomorphisms \(K \rightarrow K \). Here \(i \) denotes a 4th root of \(-1\). Select all the correct statements.

- If \(\sigma \in G \) then \(\sigma \) is a \(Q \)-automorphism of \(K \).
- The fixed field of \(G \) is \(K \).
- Let \(H \) be a proper subgroup of \(G \). Then the fixed field of \(H \) is \(Q \).
- The fixed field of \(G \) is \(Q \).

No, the answer is incorrect. Score: 0.

Accepted Answers:
- If \(\sigma \in G \) then \(\sigma \) is a \(Q \)-automorphism of \(K \).
- The fixed field of \(G \) is \(Q \).

4) Let \(G = Q(\sqrt{2}) \) and let \(G \) denote the group of all field homomorphisms \(K \rightarrow K \). Select all the correct statements.

- The fixed field of \(G \) is \(Q \).
- The fixed field of \(G \) is \(K \).
- The fixed field of \(G \) is an intermediate field \(L \) such that \(|L : Q| = 2 \).

No, the answer is incorrect. Score: 0.

Accepted Answers:
- The fixed field of \(G \) is an intermediate field \(L \) such that \(|L : Q| = 2 \).
- There is a subgroup \(M \) of \(G \) such that the fixed field of \(M \) is \(K \).

5) Let \(K = F_p \) be the field of order \(p^2 \) and let \(\Phi : K \rightarrow K \) be the Frobenius homomorphism. So \(\Phi(x) = x^p \) for every \(x \in K \). Let \(G \) be the group of automorphisms of \(K \) generated by \(\Phi \). Select all the correct statements.

- The order of \(G \) is \(2 \).
- The order of \(G \) is \(3 \).
- The fixed field of \(G \) is \(F_p^2 \).

No, the answer is incorrect. Score: 0.

Accepted Answers:
- The order of \(G \) is \(2 \).
- There is a subgroup \(M \) of \(G \) such that the fixed field of \(M \) is \(F_p^2 \).

6) Let \(G \) be a field with prime field \(F \). Let \(G \) be a group of automorphisms of \(K \). Let \(K^G \) denote the fixed field of \(G \). Select all the correct statements.

- \(F \subseteq K^G \).
- \(K : K^G = |G| \).
- \(K^G = \{ x \in K : \Phi(x) = x \} \).
- \(K^G \subseteq K \).

No, the answer is incorrect. Score: 0.

Accepted Answers:
- \(F \subseteq K^G \).
- \(K : K^G = |G| \).