Assignment 9

Due on 2020-11-18, 23:59 IST.

The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

1) Which of the following functions defined on [0, 1] are integrable?

 • The function \(x^2 \)
 • The Dirichlet function
 • The function \(\sqrt{x} \)
 • The topologist's sine curve.

 No, the answer is incorrect.
 Score 0
 Accepted Answers:
 The function \(x^2 \)
 The function \(\sqrt{x} \)

2) Let \(f \) be an increasing and bounded function on \([a, b] \rightarrow \mathbb{R} \). Then

 • \(f \) is integrable.
 • \(f \) is integrable if \(f \) is also continuous.
 • \(f \) is integrable if \(f \) is strictly increasing and need not be integrable if \(f \) is merely increasing.
 • Irrespective of the partition \(P \) of \([a, b] \), we always have \(L(f, P) \leq U(f, P) \).

 No, the answer is incorrect.
 Score 0
 Accepted Answers:
 \(f \) is integrable.

3) Let \(f : [0, 1] \rightarrow \mathbb{R} \) be integrable. Then

 • If we modify the value of \(f \) at one point then the modified function is also integrable.
 • If we modify the value of \(f \) at finitely many points then the modified function is also integrable.
 • If the value of \(f \) is modified on a set of measure zero then the modified function is integrable.
 • If we modify the value of \(f \) at countably many points then the modified function is also integrable.

 No, the answer is incorrect.
 Score 0
 Accepted Answers:
 If we modify the value of \(f \) at one point then the modified function is also integrable.
 If we modify the value of \(f \) at finitely many points then the modified function is also integrable.
 If the value of \(f \) is modified on a set of measure zero then the modified function is integrable.
 If we modify the value of \(f \) at countably many points then the modified function is also integrable.

4) Which of the following properties about a function \(f : [a, b] \rightarrow \mathbb{R}, a < b \) is guaranteed if it is integrable?

 • \(f \) is differentiable at least at one point in \([a, b]\)
 • \(f \) is continuous at least at one point in \([a, b]\)
 • \(f \) satisfies the intermediate value property
 • The set of discontinuities of \(f \) cannot be uncountable

 No, the answer is incorrect.
 Score 0
 Accepted Answers:
 \(f \) is continuous at least at one point in \([a, b]\)

5) Let \(f, g : [a, b] \rightarrow \mathbb{R} \) be integrable. Then

 • The function \(|f| \) is integrable.
 • The function \(f^2 \) is integrable.
 • The function \(\min\{f^2, g^2\} \) is integrable.
 • The function \(\max\{f^2, g^2\} \) is integrable.

 No, the answer is incorrect.
 Score 0
 Accepted Answers:
 The function \(|f| \) is integrable.
 The function \(f^2 \) is integrable.
 The function \(\min\{f^2, g^2\} \) is integrable.
 The function \(\max\{f^2, g^2\} \) is integrable.

6) Which of the following were used in the proof of the Riemann-Lebesgue theorem?

 • The fundamental theorem of calculus.
 • Existence of Lebesgue number for an open cover of a compact set.
 • Countable union of sets of measure zero is a set of measure zero.
 • The notion of the oscillation of a function at a point.

 No, the answer is incorrect.
 Score 0
 Accepted Answers:
 Existence of Lebesgue number for an open cover of a compact set.
 The countable union of sets of measure zero is a set of measure zero.
 The notion of the oscillation of a function at a point.

7) Which of the following were used to prove that any continuous function \(f : [a, b] \rightarrow \mathbb{R} \) is integrable?

 • Heine-Borel theorem.
 • Uniform continuity.
 • The minimum value theorem
 • Countable union of sets of measure zero is a set of measure zero.

 No, the answer is incorrect.
 Score 0
 Accepted Answers:
 Uniform continuity.
 The minimum value theorem.