Assignment 5

Due: Fall 2020-10-21, 23:59 EST

The text below is the content of the assignment. Please read it carefully and attempt the exercises.

1. List the three statements:
 a. Some open set is open.
 b. The complement of an open set can never be open.
 c. Any subset of \(\mathbb{R} \) is either open or closed.

2. Which of the following is true about \(\mathbb{Q} \):
 a. Each point of \(\mathbb{Q} \) is a limit point of \(\mathbb{Q} \).
 b. Every limit point of \(\mathbb{Q} \) is in \(\mathbb{Q} \).
 c. Every isolated point of \(\mathbb{Q} \) is also a limit point.

3. Suppose your teacher is to prove that \(A \subseteq \mathbb{R} \) is open. Which of the following are plausible strategies?
 a. Show every point of \(A \) is an interior point of \(A \).
 b. Show every point of \(A \) is an isolated point of \(A \).
 c. Show every point of \(A \) is an interior point of \(A \).

4. Let \(\mathbb{Q} \) be the set of all rational numbers.
 a. \(\mathbb{Q} \) is not open.
 b. \(\mathbb{Q} \) is not closed.
 c. \(\mathbb{Q} \) is not empty.

5. For \(f, g : \mathbb{R} \rightarrow \mathbb{R} \), which of the following is possible?
 a. Both \(f \) and \(g \) are continuous at every point of \(\mathbb{R} \).
 b. \(f \) is not continuous at \(0 \) but \(g \) is.
 c. \(f \) is not continuous at \(0 \) and \(g \) is continuous at \(0 \).

6. Consider the absolute value function \(f(x) = |x| \), defined on \(\mathbb{R} \). Then:
 a. \(f \) is continuous on the rational numbers of \(\mathbb{R} \).
 b. The function \(f \) is continuous on the whole of \(\mathbb{R} \).
 c. The function \(f \) is not continuous at \(0 \).

7. Suppose you are given a function \(f : \mathbb{R} \rightarrow \mathbb{R} \) and are asked to show that \(f \) is not continuous at \(0 \). Which of the following is a plausible strategy?
 a. Show that the sequence \((a_n) \) does not converge to \(0 \).
 b. Show that \((a_n) \) is finite and that \(f(a_n) \) does not converge to \(f(0) \).
 c. Show that \((a_n) \) is infinite and \(f(a_n) \) does not converge to \(f(0) \).

8. Consider the function \(f(x) = \frac{1}{x} \) for \(x \neq 0 \). Then which of the following are continuous at \(x = 0 \)?
 a. \(f \) is continuous at \(x = 0 \).
 b. \(f \) is not continuous at \(x = 0 \).
 c. \(f \) is continuous at \(x = 0 \).

9. Which of the following identifies about closure and interior are true?
 a. \(A \) is an open set if and only if its closure equals itself.
 b. \(A \) is a closed set if and only if it contains its boundary.
 c. \(A \) is neither open nor closed.

10. Which of the following pairs are possible?
 a. A countable subset of \(\mathbb{R} \) and an uncountable subset of \(\mathbb{R} \).
 b. A countable subset of \(\mathbb{R} \) and an uncountable subset of \(\mathbb{R} \).
 c. A measurable subset of \(\mathbb{R} \) and a non-measurable subset of \(\mathbb{R} \).

11. Which of the following remains possible?
 a. A countable subset of \(\mathbb{R} \) and a non-measurable subset of \(\mathbb{R} \).
 b. A countable subset of \(\mathbb{R} \) and a measurable subset of \(\mathbb{R} \).
 c. A non-measurable subset of \(\mathbb{R} \) and a measurable subset of \(\mathbb{R} \).