Assignment 9

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

Due 2020-11-18, 22:59 IST.

Determine the type of isolated singularity at each of the following cases.

1) Consider the function \(f(z) = \frac{1}{z^2-1} \) given by \(f(z) = \frac{1}{z-1} \). Determine the type of singularity at the point \(z = 1 \).
 - Removable singularity
 - Essential singularity
 - No, the answer is incorrect.

2) Consider the function \(f(z) = \frac{1}{z^3+1} \) given by \(f(z) = \frac{1}{z+1} \). Determine the type of singularity at the point \(z = -1 \).
 - Removable singularity
 - Essential singularity
 - No, the answer is incorrect.

3) Consider the function \(f(z) = \frac{1}{z^2+4} \) given by \(f(z) = \frac{1}{z+2i} \). Determine the type of singularity at the point \(z = -2i \).
 - Removable singularity
 - Essential singularity
 - No, the answer is incorrect.

4) Consider the function \(f(z) = \frac{1}{z^2-4} \) given by \(f(z) = \frac{1}{z-2} \). Determine the type of singularity at the point \(z = 2 \).
 - Removable singularity
 - Essential singularity
 - No, the answer is incorrect.

5) Consider the function \(f(z) = \frac{1}{z^2+4} \) given by \(f(z) = \frac{1}{z+2i} \). Determine the type of singularity at the point \(z = -2i \).
 - Removable singularity
 - Essential singularity
 - No, the answer is incorrect.

6) Let \(f(z) \) and \(g(z) \) be two distinct meromorphic functions with poles at \(z = a \) and \(z = b \) respectively at a point \(z \in \mathbb{C} \). Check the branch corresponding to which three statements is true.
 - The point \(z = a \) is an isolated singularity of the function \(\frac{f(z)}{g(z)} \).
 - The function \(\frac{f(z)}{g(z)} \) has a removable singularity at \(z = a \) if \(m > n \).
 - The function \(\frac{f(z)}{g(z)} \) has a pole of order \(m - n \) at \(z = a \) if \(m < n \).
 - The function \(\frac{f(z)}{g(z)} \) has an essential singularity at \(z = a \).
 - No, the answer is incorrect.

7) Check the boxes corresponding to which two statements is true:
 - The Laurent series expansion of the function \(f(z) = \frac{1}{z^3-1} \) has non-zero coefficients with negative indices.
 - The Laurent series expansion of the function \(f(z) = \frac{1}{z^3+1} \) coincides with the power series \(\sum_{n=0}^{\infty} \frac{1}{z^n} \).
 - The Laurent series of the function \(f(z) = \frac{1}{z^3} \) is unique since it has an essential singularity at \(z = 0 \) which is centered at \(0 \) where the Laurent series expansion is being considered.
 - No, the answer is incorrect.

8) The Laurent series expansion of the function \(f(z) = \frac{1}{z^3-1} \) on \(\mathbb{D}(0) \) coincides with the power series \(\sum_{n=0}^{\infty} \frac{1}{z^{3n}} \).
 - On the annulus \(1 \leq |z| < 2 \), the function \(f(z) = \frac{1}{z^3-1} \) has a Laurent series expansion \(\sum_{n=0}^{\infty} \frac{1}{z^{3n}} \).
 - No, the answer is incorrect.

9) Consider a function \(f(z) = \frac{1}{z^2+4} \) holomorphic on \(\mathbb{C} \). Determine the type of singularity.
 - The isolated singularity is an essential singularity of \(f(z) = \frac{1}{z^2+4} \).
 - The function \(f(z) = \frac{1}{z^2+4} \) has a removable singularity at \(z = 0 \).
 - The function \(f(z) = \frac{1}{z^2+4} \) has a pole of order 2 at \(z = 0 \).
 - No, the answer is incorrect.