Assignment 6

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

1) Let \(\gamma_1(t) = 1, t \in [0, 2\pi] \)
 \(\gamma_2(t) = e^t, t \in [0, 2\pi] \)
 \(\gamma_3(t) = 2 + e^{it}, t \in [0, 1] \)
 Consider the curves

 Check the boxes corresponding to which true statement(s) b) are given.

 - \(\Omega \) is a convex set.
 - \(\gamma_1 \) is homotopic to \(\gamma_2 \) with fixed end-points in \(\Omega \).
 - \(\gamma_1 \) is homotopic as closed curves to \(\gamma_2 \) in \(\Omega \).
 - \(\gamma_1 \) is homotopic with fixed end points to a reparameterization of \(\gamma_2 \) in \(\Omega \).
 - \(\Omega \) is simply connected.

 No, the answer is incorrect.

 Score: 0

 Accepted Answers:
 - \(\Omega \) is a convex set.
 - \(\gamma_1 \) is homotopic to \(\gamma_2 \) with fixed end-points in \(\Omega \).
 - \(\gamma_1 \) is homotopic as closed curves to \(\gamma_2 \) in \(\Omega \).
 - \(\gamma_1 \) is homotopic with fixed end points to a reparameterization of \(\gamma_2 \) in \(\Omega \).
 - \(\Omega \) is simply connected.

 Score: 0

 Accepted Answers:

2) Let \(\gamma \) be the triangular path \(\gamma_0 \sim \gamma_1 \sim \gamma_2 \) with \(s_1, s_2, s_3 \) being the points 0, 3i and \(-3 \). Then \(\int \frac{1}{z} \, dz = \)

 - \(0 \)
 - \(12 \)
 - \(6 \)

 No, the answer is incorrect.

 Score: 0

 Accepted Answers:
 - \(12 \)

3) Let \(\gamma \) be the closed curve, \(\gamma(t) = \frac{x}{4} \) for \(t \in [0, 2\pi] \). Then the value of the integral \(\int \frac{\tan(z)}{z} \, dz \) is ________

 No, the answer is incorrect.

 Score: 0

 Accepted Answers:
 - \(\frac{1}{2} \)

4) Consider the following two statements:

 (i) Let \(\gamma_1(t) = e^{it} \) for \(t \in [0, 2\pi] \) and \(\gamma_2 \) be the polygonal path \(\gamma_0 \sim \gamma_1 \sim \gamma_2 \sim \gamma_3 \sim \gamma_4 \) where the points \(s_1, s_2, s_3, s_4 \) are \(2i, 3i, -2i, -3i \) respectively. Then

 \[\int_{\gamma_1} \frac{dz}{z^2 + 1} = \int_{\gamma_2} \frac{dz}{z^2 + 1} \]

 (ii) Let \(\gamma(t) = e^{it} \) for \(t \in [0, 2\pi] \).

 Then

 \[\int_{\gamma} \frac{z^2}{z^2 + 5z + 6} \, dz = \]

 Check the boxes corresponding to which true statement(s) b) are given.

 - The statement (i) is true, but (ii) is false.
 - The statement (i) is false, but (ii) is true.
 - Both the statements (i) and (ii) are true.
 - Both the statements (i) and (ii) are false.

 No, the answer is incorrect.

 Score: 0

 Accepted Answers:
 - Both the statements (i) and (ii) are true.

5) The value of the integral \(\int_{-\infty}^{\infty} \frac{\sin(2t)}{t} \, dt \) is ________

 No, the answer is incorrect.

 Score: 0

 Accepted Answers:
 - \(\frac{\pi}{2} \)