Assignment 12

The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

1) Let \(X, Y \subseteq \mathbb{C} \) be open connected and \(p : X \to X \) be a covering map. Check the boxes corresponding to which true statement(s) is/are given.

- For each \(x \in X \) the subset \(p^{-1}(\{x\}) \) of \(Y \) is a discrete subset of \(Y \).
- There exists \(x \in X \) such that the subset \(p^{-1}(\{x\}) \) of \(Y \) has a limit point in \(Y \).
- \(p \) is an open mapping.
- For every open connected subset \(\Omega \subseteq \mathbb{C} \) and a holomorphic function \(g : \Omega \to X \), we can lift the function \(g \) with respect to \(p \) to a holomorphic mapping \(\hat{g} : \Omega \to Y \).

No, the answer is incorrect.

Score: 0
Accepted Answers:
- For each \(x \in X \) the subset \(p^{-1}(\{x\}) \) of \(Y \) is a discrete subset of \(Y \).
- \(p \) is an open mapping.
- Let \(\Omega \subseteq \mathbb{C} \) be an open connected subset which is simply connected and locally connected. Suppose \(g : \Omega \to X \) is a holomorphic function, then we can lift the function \(g \) with respect to \(p \) to a holomorphic mapping \(\hat{g} : \Omega \to Y \).

2) Consider the function \(f : \mathbb{C}^* \to \mathbb{C}^* \) defined by \(f(z) = z^3 \). Let \(\gamma \) be the unit circle given by \(\gamma(t) = e^{it} \) for \(t \in [0, 2\pi] \). Check the boxes corresponding to which true statements are given.

- The function \(f \) is a holomorphic function which is a local homeomorphism with a holomorphic inverse.
- The function \(f \) is a covering map.
- The curve \(\gamma(t) = e^{it} \) for \(t \in [0, 2\pi] \) is a lift of \(\gamma \) with respect to \(f \).
- The curve \(\gamma(t) = e^{3it} \) for \(t \in [0, 2\pi] \) is a lift of \(\gamma \) with respect to \(f \).
- Every closed curve in \(\mathbb{C}^* \) can be lifted to a closed curve with respect to \(f \) in \(\mathbb{C}^* \).

No, the answer is incorrect.

Score: 0
Accepted Answers:
- The function \(f \) is a holomorphic function which is a local homeomorphism with a holomorphic inverse.
- The function \(f \) is a covering map.
- The curve \(\gamma(t) = e^{it} \) for \(t \in [0, 2\pi] \) is a lift of \(\gamma \) with respect to \(f \).

3) Let \(f : D \to \mathbb{C} \) be a holomorphic function on the unit disk such that \(f(0) = 0 \), \(f'(0) = 1 \) and \(|f'(z)| < 2 \) for all \(z \in D \). Check the boxes corresponding to which true statements are given.

- The power series expansion of \(f \) around \(0 \) be given by \(\sum_{n=0}^{\infty} a_n z^n \). Then \(|a_n| \leq 2 \) for all \(n \geq 2 \).
- On the circle of radius \(1/4 \), the function \(f \) is bounded below by \(1/12 \).
- Given \(w \in D(0, 1/12) \), there exists \(z \in D(0, 1/12) \) such that \(f(z) = w \).
- The disk \(D(0, 1/12) \) is contained in the image \(f(D) \).

No, the answer is incorrect.

Score: 0
Accepted Answers:
- The power series expansion of \(f \) around \(0 \) be given by \(\sum_{n=0}^{\infty} a_n z^n \). Then \(|a_n| \leq 2 \) for all \(n \geq 2 \).
- On the circle of radius \(1/4 \), the function \(f \) is bounded below by \(1/12 \).
- Given \(w \in D(0, 1/12) \), there exists \(z \in D(0, 1/12) \) such that \(f(z) = w \).
- The disk \(D(0, 1/12) \) is contained in the image \(f(D) \).

4) Check the boxes corresponding to which true statements are given.

- There exists a non constant entire function \(f = u + iv \) such that for all \(z \in \mathbb{C} \), \(e^{f(z)} \neq 0 \).
- There exists a non constant entire function \(f \) such that \(\Re f \leq 1 \).
- \(f \) which is bounded on the real axis.
- There exists a non constant entire function.
- There exists a non constant entire function \(f \) which is bounded on both the real axis and imaginary axis.
- If \(f \) and \(g \) are entire functions such that \(e^{f(z)} + e^{g(z)} = 1 \) for all \(z \in \mathbb{C} \), then \(f \) and \(g \) are necessarily constant functions.

No, the answer is incorrect.

Score: 0
Accepted Answers:
- There exists a non constant entire function \(f \) which is bounded on the real axis.
- There exists a non constant entire function \(f \) which is bounded on both the real axis and imaginary axis.
- If \(f \) and \(g \) are entire functions such that \(e^{f(z)} + e^{g(z)} = 1 \) for all \(z \in \mathbb{C} \), then \(f \) and \(g \) are necessarily constant functions.