Assignment 10

The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

DUE ON 2020-11-25, 23:59 IST.

1) Let \(f(z) = \frac{e^{-z}}{(z-2)^{11}} \) and \(z_0 \) be the residue of \(f(z) \) at the singular point \(z = 2 \). Then the value of \(6z_0^5 \) is

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) -1

2) Let \(D \) be a domain and \(z_0 \in D \). Suppose \(f(z) \) is a holomorphic functions in \(D \backslash \{z_0\} \) and \(g(z) \) be any holomorphic function in \(D \). Check the boxes corresponding to which true statement(s) are given.

- If \(f(z) \) has a removable singularity at \(z_0 \), then
 \[\text{Res}_{z_0} f(z) = 0 \]

- If \(f(z) \) has a removable singularity at \(z_0 \) and \(g(z) \neq 0 \), then
 \[\text{Res}_{z_0} f(z) = \text{Res}_{z_0} g(z) \]

- If \(f(z) \) has a simple pole at \(z_0 \), then
 \[\text{Res}_{z_0} f(z) = \frac{g(z)}{f(z)} \]

- If \(f(z) \) has a pole of order \(m \geq 2 \) at \(z_0 \) and \(g(z) \neq 0 \), then
 \[\text{Res}_{z_0} f(z) = \frac{g(z)}{f(z)} \]

No, the answer is incorrect.
Score: 0
Accepted Answers:
- If \(f(z) \) has a removable singularity at \(z_0 \), then
 \[\text{Res}_{z_0} f(z) = 0 \]

- If \(f(z) \) has a removable singularity at \(z_0 \) and \(g(z) \neq 0 \), then
 \[\text{Res}_{z_0} f(z) = \text{Res}_{z_0} g(z) \]

- If \(f(z) \) has a simple pole at \(z_0 \), then
 \[\text{Res}_{z_0} f(z) = \frac{g(z)}{f(z)} \]

- If \(f(z) \) has a pole of order \(m \geq 2 \) at \(z_0 \) and \(g(z) \neq 0 \), then
 \[\text{Res}_{z_0} f(z) = \frac{g(z)}{f(z)} \]

3) Let \(f(z) \) be a holomorphic function in \(D \backslash \{0\} \). Check the boxes corresponding to which true statement(s) are given.

- Suppose \(f(-z) = f(z) \) for \(z \in D \backslash \{0\} \), then \(\text{Res}_{0} f(z) = 0 \)

- Suppose \(f(-z) = f(z) \) for \(z \in D \backslash \{0\} \), then \(\text{Res}_{z_0} f(z) = -1 \)

- Suppose \(f(-z) = -f(z) \) for \(z \in D \backslash \{0\} \), then \(\text{Res}_{z_0} f(z) = 0 \)

- For each \(a \in \mathbb{C} \), there exists a holomorphic function \(f_a \) on \(D \backslash \{0\} \) such that \(f_a(z) \to f_a(z) \) as \(\text{Res}_{z_0} f_a(z) \to a \)

If \(f(z) \) has pole at \(z = 0 \), then the residue of \(f(z) \) at \(z = 0 \) cannot be zero

No, the answer is incorrect.
Score: 0
Accepted Answers:
- Suppose \(f(-z) = f(z) \) for \(z \in D \backslash \{0\} \), then \(\text{Res}_{0} f(z) = 0 \)

4) Let \(D \) be a domain and \(D \) contains 0. Suppose \(f(z) \) be any holomorphic function on \(D \) such that \(f(z) \neq 0 \) and \(f(z) \neq 0 \) for \(z \in D \). Then the value of the integral \(\frac{1}{2\pi i} \int_{|z|=c} \frac{dz}{z^2} \) is

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 0

5) Let \(f : \Omega \to \mathbb{C} \) be holomorphic functions on an open connected set \(\Omega \) which contains \(D \). Suppose \(f(z) \) has a zero \(z_0 \in \Delta \) and that \(f(z) \) does not vanish at any other point of \(\Delta \). Check the boxes corresponding to which true statement(s) are given.

- The inequality \(|g(z)| < |f(z)| \) for \(z \) on the unit circle is satisfied for \(c > 0 \) small enough.

- For any \(c > 0 \), the function \(f + cg \) does not vanish on the unit circle.

- For \(c > 0 \) small enough, the function \(f + cg \) does not vanish on the unit circle.

- The function \(f + cg \) has a simple zero at \(z_0 \) in \(\Delta \) for any \(c > 0 \).

- For \(c > 0 \) small enough, the function \(f + cg \) has a zero \(z_0 \) in \(\Delta \). Moreover, the zero is simple i.e. \(\text{ord}(f + cg) = 1 \).

No, the answer is incorrect.
Score: 0
Accepted Answers:
The inequality \(|g(z)| < |f(z)| \) for \(z \) on the unit circle is satisfied for \(c > 0 \) small enough.
For \(c > 0 \) small enough, the function \(f + cg \) does not vanish on the unit circle.
For \(c > 0 \) small enough, the function \(f + cg \) has a zero \(z_0 \) in \(\Delta \). Moreover, the zero is simple i.e. \(\text{ord}(f + cg) = 1 \).