Assignment 2

1. Consider the following function:
 \[f(x) = \begin{cases}
 2x & \text{if } x \leq 0 \\
 x^2 & \text{if } x > 0
 \end{cases}
 \]
 a) Is \(f(x) \) continuous at \(x = 0 \)?
 b) Is \(f(x) \) differentiable at \(x = 0 \)?

2. Find the limit of the sequence \(a_n = \frac{(-1)^n}{n} \) as \(n \to \infty \).

3. Let \(f(x) \) be a continuous function on \([a, b] \) and differentiable on \((a, b) \). Prove that there exists at least one point \(c \in (a, b) \) such that:
 \[f'(c) = \frac{f(b) - f(a)}{b - a} \]

4. Consider the function \(f(x) = \sqrt{x} \) for \(x > 0 \).
 a) Find the derivative of \(f(x) \).
 b) Determine the interval on which \(f(x) \) is increasing.
 c) Find the critical points of \(f(x) \).

5. Let \(f(x) \) be a function with \(f(0) = 0 \) and \(f(1) = 1 \). Define \(g(x) = f(2x) \).
 a) Find \(g(0) \) and \(g(1) \).
 b) Is \(g(x) \) increasing on \([0, 1] \)?

6. Find the maximum and minimum values of the function \(f(x) = x^3 - 3x + 2 \) on the interval \([-2, 2] \).

7. Let \(f(x) \) be a twice continuously differentiable function such that \(f(0) = 0 \), \(f'(0) = 1 \), and \(f''(0) = 2 \).
 a) Find \(f(1) \) using the Taylor series expansion up to the second order.
 b) Find the interval in which the error \(|f(x) - f(0) - f'(0)x| \) is less than 0.01 for \(x \) in the interval \([0, 1] \).