Assignment 6

The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

Due on 2020-10-28, 23:59 IST.

1) Let k be an algebraically closed field, $R = k[x_1, \ldots, x_n]$ and I an R-ideal. Then the number of irreducible components of $Z(I)$ is at most $\text{deg}(R/I)$.
 Accepted Answers: True

2) Let R be a noetherian ring and I an R-ideal. True/False: If $\text{Ass}(R/I) = \text{Min} R/I$, then I is a radical ideal.
 Accepted Answers: True

3) Let $R = k[x, y, z]$ and I the ideal of the ring map $R \to k[x, y, z]$, $f(x, y, z) \mapsto f(x^2, y^3, z^4)$.
 Pick the correct answer from below:
 - $I : x = (x, y, z)$
 - $I : x^2 = 0$
 - $I : x^3 = 0$
 Accepted Answers: True

4) Let (R, m) be a noetherian local ring and I an R-ideal such that $\sqrt{I} \neq m$. True/False: m contains a non-zero-divisor on $R/(I : m^n)$.
 Accepted Answers: True

5) True/False: In the ring $k[x, y, z, w]$, $(x, y) \cap (x, w) = (x, y, z, xw, yw)$.
 Accepted Answers: True

6) True/False: If $I : w^n = I : w^{n+1}$, then $I : w^n = I : w^n$.
 Accepted Answers: True

7) Consider the ring map $C[y, z] \to C[x, y]$, $f(x, y) \mapsto f(x^2, y^3)$. The fibre over the point corresponding to $(x - \alpha, y - \beta)$ is given by the maximal ideal $\mathfrak{p} = (\alpha - x, \beta - y)$. Is \mathfrak{p} given by the maximal ideal $(\alpha - x, \beta - y)$ if $\alpha \neq 0$?
 Accepted Answers: True

8) Let $\varphi : R \to S$ be a map of rings, $y \in \text{Spec} R$ and $q \in \text{Spec} S$ such that $\varphi^{-1}(q) = y$. True/False: Then the fraction field of S/y is a finite extension of the fraction field of R/y.
 Accepted Answers: False

9) True/False: Let R be a domain and $a, b \in R$, $b \neq 0$. Then $R[\frac{a}{b}]$ is never integral over R.
 Accepted Answers: True

10) True/False: For every positive integer n, $\sqrt[n]{x}$ is integral over \mathbb{Z}.
 Accepted Answers: True