Assignment 6

Due on 2020-12-18 23:59 UTC

1. State, Chapter 16, Exercise 38: Let f be the trace of a positive circuit of a ring R. If A and B are f-hermitian, then the symmetric difference of A and B is also f-hermitian.

2. In a ring with identity, prove that $A - B$ is a subset of $A + B$.

3. A ring cannot be a group if $A = 0$ for every element A in the ring. Prove this by showing that the ring is commutative.

4. Which of the following are integral domains?
 - S_f (true)
 - S_g (false)
 - S_h (true)
 - S_i (true)

5. Prove that if A is an integral domain, then $A[x]$ is also an integral domain.

6. For which of the following groups is the group ring an integral domain?
 - G_1 (true)
 - G_2 (false)
 - G_3 (true)
 - G_4 (true)

7. Let R be a ring and a, b be elements of R. If $a + b = 0$, then $a = -b$.

8. Let R be a ring and a, b be elements of R. If $a + b = 0$, then $a = -b$.

9. Let R be a ring and a, b be elements of R. If $a + b = 0$, then $a = -b$.

10. Let R be a ring and a, b be elements of R. If $a + b = 0$, then $a = -b$.

11. Let R be a ring and a, b be elements of R. If $a + b = 0$, then $a = -b$.

12. Let R be a ring and a, b be elements of R. If $a + b = 0$, then $a = -b$.

13. Let R be a ring and a, b be elements of R. If $a + b = 0$, then $a = -b$.

14. Let R be a ring and a, b be elements of R. If $a + b = 0$, then $a = -b$.

15. Let R be a ring and a, b be elements of R. If $a + b = 0$, then $a = -b$.

16. Let R be a ring and a, b be elements of R. If $a + b = 0$, then $a = -b$.

17. Let R be a ring and a, b be elements of R. If $a + b = 0$, then $a = -b$.