Assignment 0

The due date for submitting this assignment has passed.
Due on 2020-09-14, 23:59 IST.

Note: This assignment is only for practice purposes and will not be counted towards the final score.

1. Consider the set \mathbb{C}^n as a vector space over the field \mathbb{R}. Its dimension is
 - n
 - $2n$
 - $3n$
 - $n/2$
 - n^2

2. Let Y denote the set of all real matrices of size 3×3. As a vector space over the field \mathbb{R}, it has dimension
 - 1
 - 8
 - 9
 - 81

3. If n is an integer, a leaves remainder 7 upon division by 24 and an integer b leaves remainder 14 upon division by 35 then the remainder of ab upon division by a is
 - 2
 - 1
 - 0
 - Can't say

4. Suppose $f : X \rightarrow Y$ and $g : Y \rightarrow X$ are two functions such that $f \circ g$ is the identity function on Y. Then which of the following must hold?
 - f is surjective
 - f is injective
 - g is surjective
 - None of these

5. The number of ways of arranging 6 distinguishable objects in a straight line is
 - 1
 - 6
 - 120
 - 720

6. Which of the following do not define an equivalence relation on the set of all integers?
 - $x - y \equiv 3(x - y)$
 - $x - y \equiv 3(x + y)$
 - $x - y \equiv 5(x + y)$
 - $x - y \equiv 3(x - y)$

7. Suppose A is a matrix such that $A^3 = A$. Then which of the following must hold for A?
 - All three
 - Only 1
 - Only 2
 - None of these

8. Suppose A is a matrix such that $A^2 = A$. Then which of the following must hold for A?
 - All three
 - Only 1
 - Only 2
 - None of these

9. For three square matrices A, B, and C of the same size, which of the following must hold?
 - $tr(A + B) = tr(A) + tr(B)$
 - $tr(A - B) = tr(A) - tr(B)$
 - $tr(ABC) = tr(A) tr(B) tr(C)$
 - None of these