Assignment 5

Due on 2020-09-04, 23:59 IST.

Note: All rings considered in this course are commutative with unity.

1. Choose the correct statements. Z denotes the ring of integers, R denotes the field of real numbers.

 a) Let $f(x) = Z[x]$ be a polynomial of degree 2. Suppose $f(x)$ has two distinct roots in Z. Then the ideal generated by $f(x)$ in $Z[x]$ is contained in exactly two maximal ideals of $Z[x]$.
 b) Let $f(x) = Z[x]$ be a polynomial of degree 2. Suppose $f(x)$ has two distinct roots in Z. Then the ideal generated by $f(x)$ in $Z[x]$ is contained in infinitely many maximal ideals of $Z[x]$.
 c) Let $f(x) = R[x]$ be a polynomial of degree 2. Then the ideal generated by $f(x)$ in $R[x]$ is contained in exactly two maximal ideals of $R[x]$.
 d) Let $f(x) = R[x]$ be a polynomial of degree 2. Then the ideal generated by $f(x)$ in $R[x]$ is contained in at most two maximal ideals of $R[x]$.

 No, the answer is incorrect.
 Accepted answers:
 a) True
 b) False
 c) True
 d) True

2. Which of the following rings R are PIDs?

 a) R is any integral domain.
 b) $R = K[x]$, where K is a field.
 c) $R = K[x, y]$, where K is a field.

 No, the answer is incorrect.
 Accepted answers:
 a) False
 b) True
 c) True

3. Which of the following rings R are UFDs? Z denotes the ring of integers and i denotes a complex square root of -1.

 a) R is any integral domain.
 b) $R = Z[i]$
 c) $R = Z[\sqrt{-5}]$
 d) $R = Z[x]$

 No, the answer is incorrect.
 Accepted answers:
 a) False
 b) True
 c) False
 d) True

4. Which of the given elements are irreducible in the given rings? Here Z is the ring of integers and Q is the field of rational numbers.

 $\sqrt{2} \in Z$
 $\sqrt{3} \in Z[x]$
 $2 + i \in Q(i)$
 $2 + i \in Z[i]$

 No, the answer is incorrect.
 Accepted answers:
 $\sqrt{2}$ is irreducible.
 $\sqrt{3}$ is irreducible.
 $2 + i$ is irreducible.
 $2 + i$ is irreducible.

5. Choose the correct statements.

 a) If R is a commutative ring, then $R[x]$ is also a commutative ring.
 b) If R is a PID and S is a subring of R, then S is a PID.
 c) If R is a UFD, then R is a UFD.
 d) If R is a PDR, then R is a PID.

 No, the answer is incorrect.
 Accepted answers:
 a) True
 b) True
 c) False
 d) False

6. Choose the correct statements. Z denotes the ring of integers; Q and Q denote the fields of rational and complex numbers, respectively.

 a) A greatest common divisor of $4 + 2i$ in $Z[i]$ is 1.
 b) A greatest common divisor of $2 + i$ and $2i + 1$ in $Z[i]$ is $1 + i$.
 c) A greatest common divisor of $2 + i$ and $2i - 10x + 3y + 15z - 5 i Q(x, y, z)$.
 d) A greatest common divisor of $x + 2i - 7y + 2z + 11x - 10z \in C(x, y, z)$.

 No, the answer is incorrect.
 Accepted answers:
 a) False
 b) False
 c) False
 d) False