Assignment 3

The due date for submitting this assignment has passed. As our records you have not submitted this assignment.

Note: All rings considered in this course are commutative with unity.

1. Let R, S be rings and let $J \subseteq R$ and $J \subseteq S$ be ideals. Let $\phi : R \rightarrow S$ be a ring homomorphism. Choose all the correct statements.

 - $\phi^{-1}(J)$ is always an ideal of R.
 - If ϕ is onto, then $\phi(J)$ is an ideal of S.
 - If the kernel of ϕ is contained in J, then $\phi(J)$ is an ideal of S.
 - If $\phi(J)$ is an ideal of R, then J is contained in the kernel of ϕ.

 No, the answer is incorrect.
 Score 0

 Answered:

 - $\phi^{-1}(J)$ is always an ideal of R.
 - If ϕ is onto, then $\phi(J)$ is an ideal of S.
 - If the kernel of ϕ is contained in J, then $\phi(J)$ is an ideal of S.
 - If $\phi(J)$ is an ideal of R, then J is contained in the kernel of ϕ.

2. Choose all the correct statements. R, S denote the fields of real and complex numbers, respectively.

 - There exists an injective ring homomorphism $\mathbb{R} \rightarrow \mathbb{C}$.
 - There exists a ring homomorphism $\mathbb{C} \rightarrow \mathbb{R}$.
 - There exists a surjective ring homomorphism $\mathbb{R} \rightarrow \mathbb{C}$.
 - There exists a ring homomorphism $\mathbb{C} \rightarrow \mathbb{R}$.

 No, the answer is incorrect.
 Score 0

 Answered:

 - There exists an injective ring homomorphism $\mathbb{R} \rightarrow \mathbb{C}$.
 - There exists a ring homomorphism $\mathbb{C} \rightarrow \mathbb{R}$.
 - There exists a surjective ring homomorphism $\mathbb{R} \rightarrow \mathbb{C}$.
 - There exists a ring homomorphism $\mathbb{C} \rightarrow \mathbb{R}$.

3. Choose all the correct answers. Z denotes the ring of integers.

 - The number of ideals in the quotient ring $\mathbb{Z}/6\mathbb{Z}$ is 3.
 - The number of ideals in the quotient ring $\mathbb{Z}/8\mathbb{Z}$ is 3.
 - The number of prime ideals in the quotient ring $\mathbb{Z}/7\mathbb{Z}$ is 1.
 - The number of maximal ideals in the quotient ring $\mathbb{Z}/7\mathbb{Z}$ is 3.

 No, the answer is incorrect.
 Score 0

 Answered:

 - The number of ideals in the quotient ring $\mathbb{Z}/6\mathbb{Z}$ is 3.
 - The number of ideals in the quotient ring $\mathbb{Z}/8\mathbb{Z}$ is 3.
 - The number of prime ideals in the quotient ring $\mathbb{Z}/7\mathbb{Z}$ is 1.
 - The number of maximal ideals in the quotient ring $\mathbb{Z}/7\mathbb{Z}$ is 3.

4. Let R be an arbitrary ring. Choose all the correct statements.

 - If I is a prime ideal of R and $I \subseteq J$ is proper, then $J = I$.
 - If I is a prime ideal of R then the quotient ring R/I does not contain any zero divisor.
 - If I is a prime ideal of R then R/I is a field.
 - If J is a prime ideal of R, then $I \subseteq J$.

 No, the answer is incorrect.
 Score 0

 Answered:

 - If I is a prime ideal of R and $I \subseteq J$ is proper, then $J = I$.
 - If I is a prime ideal of R then the quotient ring R/I does not contain any zero divisor.
 - If I is a prime ideal of R then R/I is a field.
 - If J is a prime ideal of R, then $I \subseteq J$.

5. Choose all the correct statements. Z denotes the ring of integers, Q, R, and C denote the fields of rational, real, and complex numbers, respectively.

 - The ideal generated by $x^2 + 1$ is maximal in $\mathbb{Z}[x]$.
 - The ideal generated by $x^2 + 1$ is maximal in $Q[x]$.
 - The ideal generated by $x^2 + 1$ is maximal in $R[x]$.
 - The ideal generated by $x^2 + 1$ is maximal in $C[x]$.

 No, the answer is incorrect.
 Score 0

 Answered:

 - The ideal generated by $x^2 + 1$ is maximal in $\mathbb{Z}[x]$.
 - The ideal generated by $x^2 + 1$ is maximal in $Q[x]$.
 - The ideal generated by $x^2 + 1$ is maximal in $R[x]$.
 - The ideal generated by $x^2 + 1$ is maximal in $C[x]$.

6. Let R be any nonzero ring. Choose all the correct statements. Z denotes the ring of integers.

 - Suppose every proper ideal of R is prime, then R is a field.
 - Every nonzero proper ideal of Z is maximal.
 - Every proper ideal of Z is prime.
 - Every nonzero prime ideal of Z is maximal.

 No, the answer is incorrect.
 Score 0

 Answered:

 - Suppose every proper ideal of R is prime, then R is a field.
 - Every nonzero proper ideal of Z is maximal.
 - Every proper ideal of Z is prime.
 - Every nonzero prime ideal of Z is maximal.