Unit 3 - Week 2

Assignment 2

Due on 2020-02-12, 23:59 IST.

Note: All rings considered in this course are commutative with unity.

1. Let \mathbb{Z} denote the ring of integers. Let $R = \mathbb{Z}[\sqrt{2}]$ be the subring of the field of real numbers defined as $R = \{a + b\sqrt{2} | a, b \in \mathbb{Z}\}$ with its usual addition and multiplication of real numbers. Determine which of the following are ideals in the ring R.

- $\{0\}$ is an ideal.
- $\{(a + b\sqrt{2}) | a, b \in \mathbb{Z}, a + b = 0\}$ is an ideal.
- $\{(a + b\sqrt{2}) | a, b \in \mathbb{Z}, 4\text{ divides } a, 4\text{ divides } b\}$ is an ideal.

2. Let S denote the field of real numbers. Determine which of the following are ideals in the polynomial ring $R = \mathbb{R}[x]$.

- $\{0\}$ is an ideal.
- The set of all polynomials of all degrees is not an ideal.
- The set of all polynomials of degree at least 10, along with the zero polynomial, is an ideal.
- The set of all polynomials which have 2 as a root is not an ideal.

3. Select ALL true statements. (Note that, by definition, any ring homomorphism $R \rightarrow R'$ sends $1 \to 1$. Z denotes the ring of integers and Q denote the field of rational numbers.

- There are at least two ring homomorphisms $Z \rightarrow Q$.
- There exists exactly one ring homomorphism $Z \rightarrow Q$.
- If f is any nonzero ring homomorphism, then $f(1)$ is the identity.
- If f is any nonzero ring homomorphism, then $f(1)$ is injective.

4. Let R be a ring. An element $x \in R$ is called a nilpotent if $x^n = 0$ for some positive integer n. Let $f : R \rightarrow R'$ be a ring homomorphism. Let $f(x) = 0$. Choose all the correct statements.

- x is a unit, then $f(x)$ is a unit.
- $f(x)$ is a unit, then x is a unit.
- $f(x)$ is nilpotent, then x is nilpotent.
- $f(x)$ is nilpotent, then x is nilpotent.

5. Let R be an arbitrary ring. Choose which of the following statements are true always.

- The set of units in R forms an ideal.
- The set of zero divisors in R along with the zero element forms an ideal of R.
- The set of nilpotent elements in X forms an ideal of R.

6. Let I, J be two ideals in a ring R. Define the join of ideals as follows:

$$ I \lor J = \left\{ a + b | a \in I, b \in J \right\} $$

Determine which of the following statements are always true.

- If I, J are ideals in R, then $I \lor J$ is an ideal.
- If I, J are ideals in R, then $I \lor J$ is a subring.
- The union $I \cup J$ is a subset of $I \lor J$.

7. Let I, J be two ideals in a ring R. Define the meet of ideals as follows:

$$ I \land J = \left\{ a \in R | a \in I, a \in J \right\} $$

Determine which of the following statements are always true.

- If I, J are ideals in R, then $I \land J$ is an ideal.
- If I, J are ideals in R, then $I \land J$ is a subring.
- The union $I \lor J$ is a subset of $I \land J$.