(1) Suppose that for each prime ideal \(p \subset A \), the local ring \(A_p \) has no nonzero nilpotent elements. Prove that \(A \) has no nonzero nilpotent elements.

Solution: Suppose \(x \) is a nonzero nilpotent element. Note that, if \(x \) is nilpotent in \(A \), then \(x/1 \) is also nilpotent in \(A_q \). Therefore \(\frac{x}{1} = 0 \in A_q \) for all prime ideals \(q \). Since \(x \) is nonzero nilpotent, \((0 : x) \) is a proper ideal. Let \(p \) be a prime containing \((0 : x) \). Since \(\frac{x}{1} = 0 \in A_p \), there exists \(s \in A \setminus p \) such that \(sx = 0 \), i.e., \(s \in (0 : x) \subset p \) which is a contradiction. Hence \(x = 0 \).

(2) Let \(I \) be an ideal and let \(S = 1 + I = \{ 1 + x : x \in I \} \). Prove that \(S \) is a multiplicatively closed subset. Prove that \(S^{-1}I \) is contained in the Jacobson radical of \(S^{-1}A \).

Solution: Note that \(0 \notin S \) and \(1 \in S \). If \(1 + x, 1 + y \in S \), then \((1 + x)(1 + y) = 1 + (x + y + xy) \in S \). Therefore \(S \) is a multiplicatively closed subset.

Let \(x/s \in S^{-1}I \), where \(s \in S \) and \(x \in I \). We need to show that \(x/s \) is in the Jacobson radical of \(S^{-1}A \). For \(r/t \in S^{-1}A \), where \(t \in S \) and \(r \in A \),

\[
1 + \frac{rx}{ts + rx} = \frac{ts}{ts}.
\]

Since \(t \) and \(s \) are in \(S = 1 + I \) and \(rs \in I \), we see that \(ts \in S \) and \(ts + rx \in S \). Therefore we conclude that \((ts + rx)/(ts) \) is a unit in \(S^{-1}A \). Hence \(\frac{x}{s} \) is in the Jacobson radical of \(S^{-1}A \).

(3) For two ideals \(I, J \) in \(A \), prove that \(I \subset J \) if and only if \(I_m \subset J_m \) in \(A_m \) for all maximal ideal \(m \).

Solution: If \(I \subset J \), then \(S^{-1}I \subset S^{-1}J \) in \(S^{-1}A \) for any multiplicative set \(S \).

Conversely, let \(I_m \subset J_m \) in \(A_m \) for all maximal ideals \(m \). Suppose \(I \nsubset J \). Then \(\frac{I + J}{J} \neq 0 \) i.e., there exists an element \(0 \neq z \in \frac{I + J}{J} \). Therefore, \((0 : z) \) is a proper ideal in \(A \) and hence contained in a maximal ideal, say \(m \). We have

\[
\left(\frac{I + J}{J} \right)_m \approx \frac{I_m + J_m}{J_m} = 0.
\]

Therefore \(z/1 = 0 \). Then there exist a \(t \in A \setminus m \) such that \(tz = 0 \). Hence \(t \in (0 : z) \). This contradicts the assumption that \((0 : z) \cap (A \setminus m) = \emptyset \). Therefore \(I \subset J \).

(4) Is \(\sqrt{2} + \sqrt{3} + \frac{3}{2} \sqrt{3} \in \mathbb{R} \) integral over \(\mathbb{Z} \)? Justify your answer.

Solution: Let \(C = \{ x \in \mathbb{R} \mid x \text{ is integral over } \mathbb{Z} \} \). Then \(-\sqrt{2} + \sqrt{2} \in C \). Therefore, \(\sqrt{2} + \sqrt{2} + \frac{3}{2} \sqrt{3} \in C \), then \(\frac{1}{2} \sqrt{3} \in C \) and hence \(\frac{3}{2} \in C \) which is a contradiction since \(\mathbb{Z} \) is integrally closed in \(\mathbb{Q} \). Therefore \(\sqrt{2} + \sqrt{2} + \frac{3}{2} \sqrt{3} \) is not integral over \(\mathbb{Z} \).