(1) Let A be a Noetherian ring, B a finitely generated A-algebra, G a finite group of A-automorphisms of B and $B^G := \{ x \in B \mid f(x) = x \text{ for all } f \in G \}$. Show that B^G is a finitely generated A-algebra.

(2) If $n\mathbb{Z} \subset \mathbb{Z}$ is an irreducible ideal, then prove that $n = p^r\mathbb{Z}$ for some prime p and a positive integer r.

(3) Find a minimal primary decomposition of $(x^3, x^2y^2, xz^3) \subset k[x, y, z]$. List the isolated and embedded prime ideals.