Assignment 10

The due date for submitting this assignment has passed. Please ensure you have submitted this assignment.

Due on 2020-04-06, 23:58 EST.

1. The equation of the normal plane to the curve \(\gamma: x = t, y = t^2, z = 1/t \) at \(t = 1 \) is

 \[
 (x - 1) + 2(y - 1) + 0(z - 1) = 0
 \]

 1 point.

2. The formula \(a \times b = c \), where the symbols have their usual meanings, is

 (a) True
 (b) False

 1 point.

3. The point of Fermat's formula, \(\frac{2}{3}, -\frac{1}{3} \) only, where the symbols have their usual meanings, is

 (a) True
 (b) False

 1 point.

4. The tangent to the curve \(\gamma: x = t, y = t^3, z = 1/t \) at \(t = 1 \) is given by

 \[
 \left(
 \begin{array}{c}
 \dot{x} \\
 \dot{y} \\
 \dot{z}
 \end{array}
 \right) = \left(
 \begin{array}{c}
 1 \\
 3t^2 \\
 -1/t^2
 \end{array}
 \right)
 \]

 Then the resultant, \[x = 1 + \frac{3}{2}t^2, y = t^3 + \frac{3}{2}t, z = 1/t \]

 at \(t = 1/2 \) is

 (a) \[\left(\frac{3}{2}, \frac{9}{2}, 2 \right) \]
 (b) \[\left(\frac{3}{2}, \frac{9}{2}, 1 \right) \]
 (c) \[\left(\frac{3}{2}, \frac{9}{2}, 0 \right) \]

 3 points.

5. For the point \(P = (1, 2, 3) \), the normal \(N = (2, 2, 1) \), the tangent \(T = (1, 1, -2) \) and the binormal \(B = (1, 1, 2) \), the principal normal \(N' \) is given by

 \[
 \frac{\langle N, N' \rangle}{\langle N, N' \rangle} N
 \]

 Then the resultant, \[x = t, y = t^2, z = t^3 \] at \(t = 2 \) is

 (a) \[(2, 4, 8) \]
 (b) \[(2, 4, 10) \]
 (c) \[(2, 4, 12) \]

 3 points.

6. For the curve \(\gamma: x = t, y = t^2, z = t^3 \) at \(t = 1 \) is given by

 (a) \[x^{(1)}, y^{(1)}, z^{(1)} \]
 (b) \[x^{(2)}, y^{(2)}, z^{(2)} \]
 (c) \[x^{(3)}, y^{(3)}, z^{(3)} \]

 Then the resultant, \[x = t, y = t^2, z = t^3 \] at \(t = 1 \) is

 (a) \[(1, 4, 27) \]
 (b) \[(1, 4, 12) \]
 (c) \[(1, 4, 9) \]

 3 points.