Matrix Solvers - Unit 1 - How to access the portal

Assignment 0

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

1) Two coplanar vectors are denoted by $ai + bj$ and $ci + dj$. Then $\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \quad 1$ point

- a) Area of the triangle made by the vectors
- b) area of parallelogram made by the vectors
- c) both a and b
- d) none of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
- b) area of parallelogram made by the vectors

2) A and B are two square matrices of same dimension then which one of the following holds true? $\quad 1$ point

- a) $A - B = B - A$
- b) $AB = BA$
- c) $(AB)^T = A^TB^T$
- d) $(AB)^{-1} = B^{-1}A^{-1}$

No, the answer is incorrect.
Score: 0
Accepted Answers:
- c) $(AB)^T = A^TB^T$
- d) $(AB)^{-1} = B^{-1}A^{-1}$

3) For a matrix $A_{m\times n}$ which of the following holds true? $\quad 1$ point

- a) Row rank of $A = \text{column rank of } A$
- b) Row rank of $A \neq \text{column rank of } A$
- c) $\text{Rank } A \leq \text{Max}(m, n)$
- d) $\text{Rank } A \geq \text{Min}(m, n)$

No, the answer is incorrect.
Score: 0
Accepted Answers:
- a) Row rank of $A = \text{column rank of } A$

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs - Powered by
For the following matrix find the determinant when $\theta = 45^\circ$.

\[
\begin{bmatrix}
1 & \sin^2\theta \\
1 & \cos^2\theta \\
1 & 2
\end{bmatrix}
\]

- a) 1
- b) 2
- c) 0.5
- d) 0

No, the answer is incorrect.
Score: 0
Accepted Answers:
- d) 0

Consider the system of equations given by the two straight lines L_1 and L_2. Find which option is true.

- a) a – no solution, b – unique solution, c – infinitely many solution
- b) b – no solution, a – unique solution, c – infinitely many solution
- c) a – no solution, c – unique solution, b – infinitely many solution
- d) c – no solution, b – unique solution, a – infinitely many solution

No, the answer is incorrect.
Score: 0
Accepted Answers:
- a) a – no solution, b – unique solution, c – infinitely many solution
a) \(\hat{A} \) is symmetric matrix

b) \(\hat{A} \) has at least one zero eigenvalue

c) \(x \) is a complex number vector

d) \(\hat{A} \) is positive definite

No, the answer is incorrect.
Score: 0

Accepted Answers:

b) \(\hat{A} \) has at least one zero eigenvalue

9) An iterative method is used for solution of \(A x = b \), \(x^{(k)} \) is the updated value of solution vector at \(k \) th iteration. Then the residual \(b - A x^{(k)} \) must

a) be zero at the first iteration

b) converge to zero for positive initial guess \(x^0 \)

c) converge to zero for higher values of \(k \) for any initial guess \(x^0 \)

d) none of the above

No, the answer is incorrect.
Score: 0

Accepted Answers:

c) converge to zero for higher values of \(k \) for any initial guess \(x^0 \)

10) If \(A x = b \), where \(A = \begin{bmatrix} \sin\theta & \cos\theta \\ -\cos\theta & \sin\theta \end{bmatrix} \) and \(b = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \) then \(x \) is

a) \(x = [1 \ 0]^T \)

b) \(x = [\sin\theta \ \cos\theta]^T \)

c) \(x = [0 \ 1]^T \)

d) \(x = [\cos\theta \ \sin\theta]^T \)

No, the answer is incorrect.
Score: 0

Accepted Answers:

b) \(x = [\sin\theta \ \cos\theta]^T \)