1) As \(x_1 \leq x_2 \)
 for monotonically increasing \(h(x) \) and \(f(x_2) \)
 \(f(x_1) \leq f(x_2) \)

2. Self-Explanatory

3. Self-Explanatory

4.

5. Self-Explanatory

6. \(f(x) = x^3 - 12x \)
 Then, \(f'(x) = 3x^2 - 12 \)
 For getting the critical points \(3x^2 - 12 = 0 \)
 \(\text{or, } x = \pm \sqrt{4} \)
 Now, \(f''(x) = 6x \)
 \(f''(2) > 0 \) \(f''(-2) < 0 \)
 Hence, the local minima and maxima are at \(x = 2 \) and \(x = -2 \) respectively.
7. \[f(x) = x^3 - 9x^2 - 48x + 92 \]
 \[f'(x) = 3x^2 - 18x - 48 \]
 Then, the critical point(s) may be found out by
 \[f'(x) = 0 \]
 \[3x^2 - 18x - 48 = 0 \]
 \[2x = -2, 8 \]
 \[f''(x) = 6x - 18 \]
 Then, \[f''(-2) = -12 - 18 = -30 < 0 \]
 \[f''(8) = 30 > 0 \]
 Thus \(x = 8 \) corresponds to a local minimum and \(x = -2 \) corresponds to a local maximum.

8. \[f(x) = 12x^4 - 32x^3 + 24x^2 - 10 \]
 Then, \[f'(x) = 48x^3 - 96x^2 + 48x \]
 \[f''(x) = 144x^2 - 192x + 48 \]
 To get the point of inflexion,
 \[f''(x) = 0 \Rightarrow 144x^2 - 192x + 48 = 0 \]
 \[(x - 1)(x - \frac{1}{3}) = 0 \]
 \[x = 1, \frac{1}{3} \]

<table>
<thead>
<tr>
<th>(-\infty < x < \frac{1}{3})</th>
<th>(x = \frac{1}{3})</th>
<th>(\frac{1}{3} < x < 1)</th>
<th>(x = 1)</th>
<th>(1 < x < \infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y'')</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Behavior</td>
<td>Concave Upward</td>
<td>Inflection</td>
<td>Concave Downward</td>
<td>Inflection</td>
</tr>
</tbody>
</table>
Assignment for Non-linear programming problem

week-1

Introduction to NLP

1. For two point \(x_1 \) and \(x_2 \), where \(x_1 \leq x_2 \), \(f(x_1) \) and \(f(x_2) \) would be monotonically increasing if
 a) \(f(x_1) \leq f(x_2) \)
 b) \(f(x_1) < f(x_2) \)
 c) \(f(x_1) > f(x_2) \)
 d) \(f(x_1) \geq f(x_2) \)

2. The function is unimodal in
 a) \([0,1]\)
 b) \([0.5,1]\)
 c) \([1,1.5]\)
 d) \([1,2]\)

3. Solve the optimization problem by graphical method

 \[
 \text{Min} \quad 3x + 2y \\
 \text{s. t.} \quad 9(x-2)^2 + 2x - y \leq 5 \\
 \quad y \leq 5 \\
 \quad x, y \geq 0
 \]

 a) 4.61
 b) 5.90
 c) 3.89
 d) 4.99

4. Find the point of inflection

 \[
 f(x) = 4x^3 - 18x^2 + 27x - 10
 \]

 a) \(x=2 \)
 b) \(x=2.3 \)
 c) \(x=1.7 \)
 d) \(x=1.5 \)
5. Solve the optimization problem by graphical method

\[
\text{Max } 2x + 3y \\
\text{s.t. } x^2 + y^2 \leq 5 \\
x + y \geq 2 \\
x, y \geq 0
\]

a) 16.99
 b) 10.23
 c) 8.06
 d) 13.33

6. Identify local minima and local maxima of \(f(x) = x^3 - 12x \) over the region \(-3 \leq x \leq 3\).

a) \(x = 0, x = 0 \)
 b) \(x = 2, x = -2 \)
 c) \(x = 3, x = -3 \)
 d) \(x = 1, x = -1 \)

7. Find the value of \(x \) for which the local minima in the interval \([1,2]\)

\[
f(x) = \cos(14.5x - 0.3) + x(x + 0.2) + 1.01
\]

a) 1.8
 b) 1.3
 c) 1.5
 d) 1.1

8. Find the point of inflections

\[
f(x) = 12x^4 - 32x^3 + 24x^2 - 10
\]

a) 1 and 0.33
 b) 2 and 1.33
 c) -1 and -1.33
 d) 0 and -0.33
Answer

1. a,
2. c,
3. a
4. d
5. c
6. b
7. d
8. a