(a) \(f(x) = \frac{1}{x} \) on \([0, 1]\)

Let \(x_n = \frac{1}{n} \) and \(y_n = \frac{1}{n+1} \)

Then \(\lim |x_n - y_n| = 0 \)

But \(|f(x_n) - f(y_n)| = |n - (n+1)| = 1 \)

So, not uniformly continuous.

(b) \(f(x) = \sin x^2 \) on \([0, \infty]\)

Let \(x_n = \sqrt{n\pi} \) and \(y_n = \sqrt{n\pi + \frac{\pi}{2}} \)

Then, \(\lim |x_n - y_n| = 0 \)

But \(|f(x_n) - f(y_n)| = |\sin n\pi - \sin (\frac{n\pi + \pi}{2})| = |\cos n\pi| = 1 \)

So, not uniformly continuous.

(c) \(|\sin x - \sin y| = |2\sin \left(\frac{x-y}{2}\right) \cos \left(\frac{x+y}{2}\right)| \)

\[\leq |2\sin \left(\frac{x-y}{2}\right)| \leq |\frac{x(x-y)}{2}| \]

i.e. \(|\sin x - \sin y| \leq |x-y| \)

\(\Rightarrow \) \(f(x) = \sin x \) is Lipschitz function.

\(\Rightarrow \) \(f(x) = \sin x \) is uniformly continuous.
(2) (d) \(f(x) = x^2 \) on \([0, 00]\)

let \(x_n = \sqrt{n+1} \) and \(y_n = \sqrt{n} \)

then, \(\lim n |x_n - y_n| = 0 \)

But \(|f(x_n) - f(y_n)| = 1 \)

so, not uniformly continuous.

(3) (a) as from theory.

(4) (c)

(5) (d) from Intermediate Value theorem.

(6) (d) Explained in lecture -52.
(7) (b)
\[f(x) = \begin{cases}
0 & \text{when } x > 0 \\
2 & \text{when } x \leq 0
\end{cases} \]

so, \(f \) has a discontinuity of first kind at \(x = 0 \).

(8) (a)
\[f(x) = \begin{cases}
1 & \text{, when } x \text{ is irrational} \\
-1 & \text{, when } x \text{ is rational}
\end{cases} \]

First, let \(a \) be any rational number so that \(f(a) = -1 \).

Since, in any interval there lie an infinite number of rational and irrational numbers, therefore, for each positive integer \(n \), we can choose an irrational number \(a_n \) so that \(|a_n - a| < \frac{1}{n} \).

Thus the sequence \(\{a_n\} \) converges to \(a \).

But \(f(a_n) = 1 \) for all \(n \), and \(f(a) = -1 \), so that
\[\lim_{n \to \infty} f(a_n) \neq f(a). \]

Thus the function is discontinuous at any rational number \(a \).

Next, let \(b \) be any irrational number.
For each positive integer \(n \) we can choose a rational number \(b_n \) such that \(|b_n - b| < \frac{1}{n} \). Thus the sequence converges to \(b \).

But \(f(b_n) = -1 \) for all \(n \) and \(f(b) = 1 \).

\[\lim_{n \to \infty} f(b_n) = f(b) \]

Hence, the function is discontinuous at all irrational points.

\(9\) \(a\)

\[\lim_{x \to 0} \frac{\sin 2x}{x} = 2 \]

So, \(f \) has removable discontinuity at \(x = 0 \).

\(10\) \(c\)

\[f(x) = \begin{cases} x, & \text{when } x \text{ is irrational} \\ -x, & \text{when } x \text{ is rational} \end{cases} \]

First, let \(a \neq 0 \) be any rational number, so that \(f(a) = -a \). Since in every interval there lie an infinite number of rational and irrational numbers, therefore, for each positive integer \(n \),
we can choose an irrational number \(\alpha\) such that

\[|a_n - \alpha| < \frac{1}{n}\]

Thus the sequence \(\{a_n\}\) converges to \(\alpha\)

\[\lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} a_n = \alpha\]

Thus \(\lim_{n \to \infty} f(a_n) \neq f(\alpha), \ \alpha \neq 0\)

So, the function is discontinuous at any rational number, other than zero.

In a similar way, the function may be shown to be discontinuous at every irrational point.

Let \(\epsilon > 0\) be given. Then for \(\delta = \epsilon\), we have

\[|x| < \delta \Rightarrow |f(x) - f(\alpha)| = \left|\frac{x}{1-x}\right| < \epsilon, \quad \text{when} \ x \ \text{is rational}\]

and

\[|x| < \delta \Rightarrow |f(x) - f(\alpha)| = \epsilon - |x| < \epsilon, \quad \text{when} \ x \ \text{is irrational}\]

Thus

\[|x| < \delta \Rightarrow |f(x) - f(\alpha)| < \epsilon\]

Hence, the function is continuous at \(x = 0\).