Solution of Assignment - 1

(1) We may write

\[W = \{ b_k : b_k(x) = k \text{ for all } x \in \mathbb{R} \} \]

Now suppose a function

\[f : W \rightarrow \mathbb{R} \text{ defined as} \]

\[f(b_k) = k \]

then clearly

\[f \text{ is a one-one onto, so,} \]

\[|W| = |\mathbb{R}| \]

(2) To solve this question we will check each option one by one.

(a) \[d(-2, -3) = \min(-2, -3) \]

\[= -3 \leq 0 \]

so, it is not a metric.

(b) \[d(x, y) = |x - y| \text{ satisfies all the properties to be a metric trivially.} \]

so, it is a metric on \(\mathbb{R} \).

(c) \[d(-1, 1) = |(-1)^2 - 1^2| = 0 \]

but \(-1 \neq 1\)

so, it is not a metric.
\[A = [0,1] \]

(a) \(\overline{A} = [0,1] \)

(b) \(\text{int}(A) =]0,1[\)

(c) \(\text{int}(A) =]0,1[\)

(d) \(A' = [0,1] \)

So, only (c) matches with the options given in the question.

(4) Trivial from definitions.

(5) Let \(S \) be infinite (follow lecture 1 for better explanation)

Consider \(F_n = \{ T \subseteq S : |T| = n \} \)

Since \(S \) is infinite, there exists subsets of all finite cardinalities.

So, \(F_n \) is non-empty.

Now in each \(F_n \), there must exist an element \(s_n \) which is not in other \(F_n \). Now the set collection of all these \(s_n \), say \(S' \), is such that \(S' \subseteq S \) and \(S' \) is countable.

So, every infinite set has a countable subset.
5) the option (b) of (5) is not always true. As for example.

\[\mathbb{N} = \text{the set of natural no.} \]

is an infinite set but does not have an uncountable subset because it is itself a countable set.

(6)

\[
\begin{array}{c}
\text{A} \\
\text{B}
\end{array}
\]

Clearly, the picture of \(\mathcal{A} \) is a union of two convex sets. But the line \(AB \) does not contain in the union. So, union of convex sets can not be always convex.

Again, suppose \(S \) and \(T \) are two convex sets.

Let \(U = S \cup T \)

Let \(A \) and \(B \) be any arbitrary points of \(U \)

Let \(W = \{ x \mid x \text{ is a point of the line segment } AB \} \)
Now, \(A, B \in U = SAT \)
\[\Rightarrow A, B \in S \text{ and } A, B \in T \text{ both} \]
\[\Rightarrow W \in S \text{ and } W \subseteq T \text{ both} \]
\[\text{since } S \text{ and } T \text{ both are convex} \]
\[\Rightarrow W \subseteq SAT \]

So, \(SAT \) is convex.

(a) follow lecture 2

(b) suppose

\[f : \mathbb{N} \rightarrow A \text{ s.t. } f(n) = \frac{1}{n} \]

Clearly, \(f \) is one-one and onto.

So, \(A \) is countable.

(c) \[g : \mathbb{N} \rightarrow S \text{ by } g(n) = (0, n) \]

\[\text{one-one onto} \]

So, \(S \) is also countable.

(d) Suppose,

\[X = \{ x = (x_1, x_2, \ldots) \mid x_i = 0 \text{ or } 1 \} \]

It is already discussed in lecture (2) that \(X \) is uncountable.
Now, consider a mapping

\[f : P(\mathbb{N}) \rightarrow X \text{ defined by} \]

\[f(A) = (x_1, x_2, \ldots) \text{ such that} \]

\[x_i = \begin{cases}
1 & \text{if } i \in A \\
0 & \text{if } i \notin A
\end{cases} \]

Clearly, \(f \) is one-one.

Consider any \(x = (x_1, x_2, \ldots) \in X \) then we can find a set \(B \),

\[B = \{ i \mid x_i = 1 \} \subset \mathbb{N} \]

so, \(f \) is onto

\[\therefore P(\mathbb{N}) \sim X \]

i.e. \(P(\mathbb{N}) \) is uncountable.
(8) (a) \[d(2,3) = \max(2-3,0) \]
\[= \max(-1,0) \]
\[= 0 \]

But 2 \neq 3, so, \(d(z,d) \) is not a metric space.

(b) 1. \(d'(x,y) > 0 \) and \(d'(x,y) = 0 \) iff \(x = y \).
2. \(d'(x,y) = d'(y,x) \)
3. If \(d'(x,y) = 0 \), then
 Clearly, \(d'(x,y) \leq d'(x,z) + d'(z,y) \)
 \[\text{if } \ d'(x,y) = 1, \text{ then } x \neq y \]

So, \(d'(x,z) + d'(z,y) = \begin{cases}
2 & \text{if } z \neq x \neq y \\
1 & \text{if } z = \text{either } x \text{ or } y
\end{cases} \)

In any case \(d'(x,y) \leq d'(x,z) + d'(z,y) \)

So, \((x,d') \) is a metric space.

(c) \[d_p(1,-1) = |1 - (-1)| = 0 \]

but, \(1 \neq -1 \)

So, \((\mathbb{Z},d_p) \) is not a metric space.
Both the points \((5, 4)\) and \((5, -4)\) are in the given set, but all the points of the line segment \((5, 4)\) joining \((5, 4)\) and \((5, -4)\) do not lie on the set because \(8\) is removed.

\[(b)\]

\[(c)\]
10 (a) union of open sets, so \(X \) is open.

(b)
\[y = x^3 \]
closed, because
\[\text{int}(Y) = \emptyset \]
so \(\text{int}(Y) \neq Y \).
thus not open.

(c)
the annular ring
\(Z \setminus V \) contains
the inside boundary,
the points of which
are not interior
points of \(Z \setminus V \).
So, \(Z \setminus V \) is not
an open set.