Expectation of Absolutely Continuous RVs

In this lecture, we discuss about the computation of expectation for absolutely continuous random variables/ vectors. We shall also see some inequalities involving the moments of general RVs.

Note 17: Given an absolutely continuous RV \(X : (\Omega, \mathcal{F}, P) \rightarrow (\mathbb{R}, \mathcal{B}_\mathbb{R}) \) and a Borel measurable function \(g : (\mathbb{R}, \mathcal{B}_\mathbb{R}) \rightarrow (\mathbb{R}, \mathcal{B}_\mathbb{R}) \), the RV \(g(X) : (\Omega, \mathcal{F}, P) \rightarrow (\mathbb{R}, \mathcal{B}_\mathbb{R}) \) is not necessarily absolutely continuous. For example, taking \(g \) to be a constant function, we get \(g(X) \) is a constant/degenerate RV.

To ensure that \(g(X) \) is absolutely continuous, we need additional regularity of \(g \). We recall a result,
usually discussed in basic probability courses. We state this without proof.

For brevity, we do not state a similar result for random vectors.

Theorem 2: Continue with the notations of Note 17. Let \(g: \mathbb{R} \to \mathbb{R} \) be differentiable with \(g(x) > 0 \ \forall x \in \mathbb{R} \). Then the RV \(Y = g(X) \) is also an absolutely continuous RV with p.d.f \(f_Y \) given by

\[
f_Y(y) = \begin{cases}
 f_X(g'(y)) \frac{1}{g'(y)} & \text{if } y \in (g(-\infty), g(\infty)) \\
 0 & \text{otherwise},
\end{cases}
\]

where \(f_X \) is the p.d.f of \(X \), \(g(-\infty) := \lim_{x \to \infty} g(x) \) and \(g(\infty) := \lim_{x \to -\infty} g(x) \).

Computation of expectation for absolutely continuous random variables/ vectors:

let \(X: (\Omega, \mathcal{F}, P) \to (\mathbb{R}^d, \mathcal{B}_{\mathbb{R}^d}) \) be an absolutely continuous random vector.
with pdf f_X. By definition,

$$\frac{d \, P \circ x^{-1}}{d \, x^{(d)}} = f_X,$$

where $x^{(d)}$ is the Lebesgue measure on \mathbb{R}^d.

By Exercise 4(2),

$$EX = \int x(w) \, dP(w) = \int x \, dP \circ x^{-1}(x)$$

$$= \int \mathbb{R}^d x \cdot f_X(x) \, dx^{(d)}(x) = \int_{\mathbb{R}^d} x \cdot f_X(x) \, dx,$$

provided one of the integrals exist. Note that "$x" and "EX" in the above computation is \mathbb{R}^d-valued and the equality can be interpreted component-wise. Another way to interpret the above equalities is through the integration of \mathbb{R}^d-valued measurable functions with respect to measure on \mathbb{R}^d. This can be defined in a manner similar to the discussion for \mathbb{R}-valued functions in Week 6.

Note 18: Continue with the notations of Note 17 and write $Y = g \circ X = g(x)$.
Then, show that (Exercise)

\[\int_y dP_y(y) = EY = E g(x) = \int g(x) dP_x(x), \]

provided one of the integrals is defined.

By the above discussion,

\[EY = E g(x) = \int g(x) f_x(x) dx, \]

provided the integral exists. Note that the expression is valid for any Borel measurable \(g \) and the RV \(Y \) is not necessarily absolutely continuous. By choosing appropriate functions \(g \), we consider the moments \(E(x-c)^n \) for \(X \).

Observe that the above expressions for expectation matches with those discussed in basic probability courses.

Exercise 5: Compute the moments of \(X \) when \(X \sim \text{Uniform}(0,1) \), \(\text{Exp}(\alpha) \) or \(N(\mu, \sigma^2) \).

Note 19: We may now repeat the usual analysis done in basic probability courses involving variance and
covariance etc.

Exercise 6: Check that $\mu = \mathbb{E} x$ and
$\sigma^2 = \text{variance}(X) = \mathbb{E}(x - \mu)^2$ when $X \sim N(\mu, \sigma^2)$.

Note 20: Following the discussion in
Note 26 of Week 7, we look at the
characteristic functions of absolutely
continuous RVs. For such RVs x,

$$\phi_x(u) = \mathbb{E} e^{iuX}, \quad u \in \mathbb{R}$$

$$= \int \cos((ux)) \, d\mathbb{P}^x \, \mathbb{R}$$

$$+ i \int \sin((ux)) \, d\mathbb{P}^x \, \mathbb{R}$$

$$= \int e^{iuX} \, f_x(x) \, dx, \quad \mathbb{R}$$

when X is an \mathbb{R}^d-valued random vector,
the characteristic function is defined in
the following way: for $u \in \mathbb{R}^d$,

$$\phi_x(u) = \mathbb{E} e^{iu \cdot X}$$

$$= \mathbb{E} \exp\left(\sum_{j=1}^{d} i u_j X_j \right)$$

$$= \int e^{iu \cdot X(\omega)} \, d\mathbb{P}(\omega)$$

\mathbb{R}
\[= \int e^{iu \cdot x} \, dP_{\text{law } x}(x). \]

As mentioned in Note 26 of Week 7,
\(\phi_x \) uniquely determines the law of \(x \).

Note 25: Recall from Note 25 of Week 3 that \(x = (x_1, \ldots, x_d)^t \) is a random vector on a probability space \((\Omega, \mathcal{F}, P)\) if and only if \(x_j = 1, 2, \ldots, d \) are RVs on the same probability space. More generally, consider \(1 \leq j_1 < j_2 < \cdots < j_n \leq d \) and look at the continuous map \(g: \mathbb{R}^d \to \mathbb{R}^n \) given by \(g(x_1, \ldots, x_d) := (x_{j_1}, \ldots, x_{j_n})^t \), \(\forall x \).

Then \((x_{j_1}, \ldots, x_{j_n})^t = g(x) \) is an \(\mathbb{R}^n \)-valued random vector.

Exercise 7: Continue with the notations of Note 21. Show that \((x_{j_1}, \ldots, x_{j_n})^t \) is discrete if \((x_1, \ldots, x_d)^t \) is discrete. Can you make a similar statement for absolutely continuous random vectors?
Note 22: Continue with the notations of Note 21. As mentioned above, the law/distributions of \((X_{j_1}, \ldots, X_{j_n})^t\) for \(1 \leq n < d\) with \(1 \leq j_1 < \cdots < j_n \leq d\) can be obtained from the law/distribution of \(X = (X_1, \ldots, X_d)^t\). These \(n\)-dimensional distributions are referred to as the \(n\)-dimensional marginal distributions of the \(d\)-dimensional random vector \(X\).

Given \(X\), the marginal distributions are uniquely determined. However, the converse is not true.

Exercise 8: Find an example showing that the marginal distributions do not uniquely determine the distribution of a random vector.