Assignment-08

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

1) Let u solve the equation $u_t = u_{xx}; u(0, t) = 0 = u(t, 0), u_x(0, 0) = \frac{1}{2}\sin x - \frac{1}{3}\sin 3x$. Then
 - u attains its maxima at exactly one point.
 - u attains its minima at exactly one point.
 - There does not exist any maxima of u.
 - SMP does not hold for u.
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - SMP does not hold for u.

2) Let f, g be continuous and consider $u_t - \Delta u = f, u|_{\partial \Omega} = g$ on Γ_T.
 - If Ω is bounded, then there is a unique solution.
 - If $\Omega = \mathbb{R}^n$, then there is a unique solution.
 - If Ω is any open set, then there is a unique solution.
 - Never admits a unique solution.
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - $\text{If } \Omega \text{ is bounded, then there is a unique solution.}$

3) Let Ω be bounded and open and w solve $w_t - \Delta w = 0$ in $\Omega_T = \Omega \times (0, T)$; $w = 0$ on Γ_T. Define $E(t) = \int_{\Omega} w^2(x, t)dx$. Then
 - E exists but it is not continuous.
 - $E(t) \leq 0$
 - $E(t) \leq 0$ does not exist.
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - $\text{If } \Omega \text{ is bounded, then there is a unique solution.}$

4) Let Ω be bounded and open and u solve $u_t - \Delta u = 0$ in $\Omega_T = \Omega \times (0, T)$; $u = 0$ on Γ_T. Define $u(x, t) = w(x, t) = \frac{e^{-\frac{x^2}{4(T-t)}}}{(2\pi T-t)^{n/2}}$.
 - $\Omega \subset \mathbb{R}^n \times (0, T)$.
 - $\Omega = \mathbb{R}^n \times (0, T)$.
 - $\Omega \approx \mathbb{R}^n \times (0, T)$.
 - None of the above.
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - $\text{If } \Omega \text{ is bounded, then there is a unique solution.}$

5) Consider the problem $u_t - \Delta u = 0$ in $\mathbb{R}^n \times (0, T)$; $u = 0$ on $\mathbb{R}^n \times (0)$. Then
 - There are at least two solutions.
 - Each nontrivial solution grows very rapidly as $|x| \to \infty$.
 - $u = 0$ is the only solution.
 - None of the above.
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - $\text{There are at least two solutions.}$
 - Each nontrivial solution grows very rapidly as $|x| \to \infty$.

Due on 2021-03-17, 23:59 IST IST.