Assignment-04

The due date for submitting this assignment has passed.

As per our records you have not submitted this assignment.

Due on 2021-02-17, 23:59 IST.

1) Which of the following is true?
 (1 point)

 □ There is a constant $C > 0$ such that if u is a harmonic function in Ω and $\overline{V} \subset \subset \Omega$, then $\sup_{\overline{V}} u \leq C \inf_{\overline{V}} u$.

 □ There is a constant $C > 0$ such that if u is a non-negative harmonic function in Ω and $\overline{V} \subset \subset \Omega$, then $\sup_{\overline{V}} u \leq C \inf_{\overline{V}} u$.

 □ A non-positive, non-constant harmonic function u in Ω satisfies $u \leq -C < 0$ on any compact set $\overline{V} \subset \subset \Omega$, for some $C > 0$.

 □ Any harmonic function satisfies $\sup_{\overline{V}} u \geq C \inf_{\overline{V}} u$, in any \overline{V} such that $\overline{V} \subset \subset \Omega$, where C depends on \overline{V}.

No, the answer is incorrect.
Score: 0
Accepted Answers:

2) If u solves $\Delta u = |Vu|^2 + 1$ in an open connected set Ω, then
 (1 point)

 □ u attains maximum in $\overline{\Omega}$.

 □ u cannot attain maximum on $\partial \Omega$.

 □ Mean value property holds for every $B(x, r) \subset \Omega$.

 □ u is the unique solution of the problem.

No, the answer is incorrect.
Score: 0
Accepted Answers:

3) Let $u(x, y) = \log(x^2 + y^2)$ in $B(0, 1)^c = \mathbb{R}^2 \setminus B(0, 1)$. Then
 (1 point)

 □ u is harmonic in $B(0, 1)^c$.

 □ u has a maximum in $B(0, 1)^c$.

 □ u attains minimum in $B(0, 1)^c$.

 □ u admits neither maximum, nor minimum in $B(0, 1)^c$.

No, the answer is incorrect.
Score: 0
Accepted Answers:

4) The problem $\Delta u = 0$, $u(x, 0) = 1$ in $\mathbb{R} \times (0, \infty)$ has
 (1 point)

 □ no solution.

 □ a unique solution.

 □ at least two solutions.

 □ infinitely many solutions.

No, the answer is incorrect.
Score: 0
Accepted Answers:

5) Which of the following is true? (Assume the functions not to be identically zero.)
 (1 point)

 □ Zeros of harmonic functions are isolated.

 □ Zeros of harmonic functions are not isolated.

 □ Zeros of holomorphic functions are isolated.

 □ Zeros of holomorphic functions are never isolated.

No, the answer is incorrect.
Score: 0
Accepted Answers:

Zeros of harmonic functions are never isolated.

Zeros of holomorphic functions are isolated.