Assignment 3

The due date for submitting this assignment has passed.

Due on 2021-02-10, 23:59:00

As per your records you have not submitted this assignment.

1. Let \(f(x) = |x| \). \(f(x) \) is differentiable functions such that \(f'(c) = f'(c), V_a \in [a, b] \). Then which of the following is true:

 a) \(f(x) = x \) for \(x \in [a, b] \).
 b) \(f(x) = x \) for \(x \in [a, b] \) for some \(c \) in \(R \).
 c) \(f(x) = x \) for \(x \in [a, b] \) for some \(c \) in \(R \).
 d) The answer is incorrect.

 Accepted Answer:
 c) \(f(x) = x \) for \(x \in [a, b] \) for some \(c \) in \(R \).

 1 point

 The function \(f(x) = x^2 - 2x + 5 \) has its maximum value at the point \(x = 1 \). The value of \(a \) is

 a) 0
 b) 1
 c) 2
 d) 3

 No, the answer is incorrect.

 Accepted Answer:
 c) 2

 1 point

2. If \(f: [a, b] \to R \) is continuous on \([a, b] \) and differentiable on \((a, b) \) with \(f'(c) = 0 \), then which of the following is true?

 a) \(f(x) \) is not differentiable at \(c \).
 b) \(f(x) \) is differentiable at \(c \).
 c) \(f(x) \) has a local maximum at \(c \).
 d) \(f(x) \) has a local minimum at \(c \).

 Accepted Answer:
 d) \(f(x) \) has a local minimum at \(c \).

 1 point

3. A function \(f(x) = \frac{1}{x} \) is said to be in \(L^1(\mathbb{R}) \) if there exists \(C > 0 \) such that \(|f(x)| \cdot |x| \leq C \) for \(x \neq 0 \). Which of the following functions does not belong to \(L^1(\mathbb{R}) \)?

 a) \(f(x) = 1 \)
 b) \(f(x) = x^2 \)
 c) \(f(x) = \frac{1}{x} \)
 d) \(f(x) = \frac{1}{|x|} \)

 Accepted Answer:
 d) \(f(x) = \frac{1}{|x|} \)

 1 point

4. Let \(f: [0, 1] \to \mathbb{R} \) be a differentiable function such that \(f'(x) = 4 \). Then \(f(x) \) is increasing on

 a) \(\mathbb{R} \)
 b) \((0, 1)\)
 c) \([-2, 1]\)
 d) \((-\infty, x) \cup (x, \infty)\)

 No, the answer is incorrect.

 Accepted Answer:
 b) \((0, 1)\)

 1 point

5. The absolute maximum value of the function \(f(x) = \frac{1}{x^2} \) on \([1, 3] \) is

 a) 0
 b) 1
 c) 2
 d) 3

 No, the answer is incorrect.

 Accepted Answer:
 b) 1

 1 point

6. The point of inflection of the function \(f(x) = x^2 \) in \((-2, 3)\) is

 a) \(-1\)
 b) \(0\)
 c) \(1\)
 d) \(2\)

 No, the answer is incorrect.

 Accepted Answer:
 c) \(1\)

 1 point

7. Let \(f(x) = \frac{1}{x^2} \). Then which of the following is correct?

 a) \(f(x) \) is a horizontal asymptote.
 b) \(f(x) \) is a vertical asymptote.
 c) \(f(x) \) is a horizontal asymptote.
 d) \(f(x) \) is a vertical asymptote.

 Accepted Answer:
 c) \(f(x) \) is a horizontal asymptote.

 1 point

8. Which of the following is a valid asymptote for the curve \(y = \frac{1}{x^2} \) for \(x > 30 \)?

 a) \(x = 0\)
 b) \(y = 0\)
 c) \(x = 1\)
 d) \(y = 30\)

 No, the answer is incorrect.

 Accepted Answer:
 b) \(y = 0\)

 1 point