Assignment 6

The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

Due on 2020-10-28, 23:59 IST.

1) Which of the following is true for \(f, g \in \mathbb{F}_p[x] \)?
 - \(\gcd(f, g) \neq 1 \) if there exists \(x, t \in \mathbb{F}_p[x] \setminus \{0\} \) such that \(xt + ty = 0 \) with degree of \(x \) less than degree of \(g \) and degree of \(t \) less than degree of \(f \)
 - \(\text{res}(f, g) = 0 \) if \(\gcd(f, g) \neq 1 \)
 - \(\text{res}(f, g) = 0 \) if there exist \(x, t \in \mathbb{F}_p[x] \setminus \{0\} \) such that \(xt + ty = 0 \) where degree of \(x \) is less than degree of \(g \) and degree of \(t \) is less than degree of \(f \) then \(\text{res}(f, g) = 0 \)
 - All of the above.

No, the answer is incorrect.
Score: 0
Accepted Answers: All of these.

2) Let \(f \) be a quadratic polynomial over \(\mathbb{F}_p[x] \), \(f = ax^2 + bx + c \), where \(a \neq 0 \). Let \(f' \) denote the derivative of \(f \). Then, which of the following is true?
 - \(\text{res}(f, f') = 0 \) if \(f \) has equal roots.
 - \(\text{res}(f, f') = 0 \) if \(f \) is square free.
 - \(\text{res}(f, f') = 0 \) if \(f \) has equal roots.
 - All of these.

No, the answer is incorrect.
Score: 0
Accepted Answers: All of these.

3) Let \(p \) be a prime and \(q \) be a prime power, \(q = p^k \), where \(k \geq 1 \). Let \(d \) be the degree of input polynomial given over finite field \(\mathbb{F}_p \) or its finite extension \(\mathbb{F}_{q^m} \). Then, which of the following is true?
 - If we have a deterministic \(\mathbb{F}_{q^m} \) factorization algorithm over \(\mathbb{F}_p \), then we have a deterministic \(\mathbb{F}_q \) factorization algorithm over \(\mathbb{F}_{q^m} \).
 - If we have a deterministic \(\mathbb{F}_{q^m} \) factorization algorithm over \(\mathbb{F}_p \), then we have a deterministic \(\mathbb{F}_q \) factorization algorithm over \(\mathbb{F}_{q^m} \).
 - Both of these.
 - Factoring over \(\mathbb{F}_p \) is unrelated to factoring over \(\mathbb{F}_{q^m} \).

No, the answer is incorrect.
Score: 0
Accepted Answers: Both of these.

4) Let \(f \) be an irreducible polynomial of degree \(d \) in \(\mathbb{F}_p[x] \) with \(p \) being the characteristic of \(\mathbb{F}_p \). Recall that \(F := \mathbb{F}_p(\xi) \) is also a finite field. Which of the following is true about \(F \)?
 - \(F \) is a finite field of order \(p^d \).
 - \(F \) is a finite field of characteristic \(p \).
 - Only 1.
 - Only 2.
 - Only 3.
 - Only 2 and 3.

No, the answer is incorrect.
Score: 0
Accepted Answers: Only 1 and 2.

5) Let \(\mathbb{F}_p \) be a finite field of the characteristic \(p > 2 \). Which of the following is true about the polynomial \(f := x^{p^k - 1} + 1 \) in \(\mathbb{F}_p[x] \)?
 - Only the quadratic non-residues in \(\mathbb{F}_p \) can be the roots of \(f \).
 - All the quadratic non-residues in \(\mathbb{F}_p \) are the roots of \(f \).
 - Some quadratic residue in \(\mathbb{F}_p \) might be the root of \(f \).
 - Only 1.
 - Only 1 and 2.
 - Only 3.
 - Only 2 and 3.

No, the answer is incorrect.
Score: 0
Accepted Answers: Only 1 and 2.

6) Let \(f, g \in \mathbb{F}_p[x] \) be two univariate polynomials, where \(p \) is a field, such that their resultant vanishes identically. Which of the following is necessarily true?
 - \(f \) and \(g \) share a common factor in \(\mathbb{F}_p[x] \).
 - \(f \) and \(g \) share a common root in \(\mathbb{F}_p[x] \).
 - Only 1.
 - Only 2.
 - Both 1 and 2.
 - Neither 1 nor 2.

No, the answer is incorrect.
Score: 0
Accepted Answers: Only 1.