Assignment 4

The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

1) Let \(a \) be an element of \(\mathbb{Z}/(n) \). What is the time complexity (in bit operations) of computing \(a^d \) in \(\mathbb{Z}/(n) \)?

- \(\mathcal{O}(d, n^2) \)
- \(\mathcal{O}(\log d, n^2) \)
- \(\mathcal{O}(d, \log^2 n) \)
- \(\mathcal{O}(\log d, \log^2 n) \)

No, the answer is incorrect
Score: 0
Accepted Answer:
\(\mathcal{O}(\log d, \log^2 n) \)

2) What is the time complexity of multiplying two \(n \times n \) lower triangular matrices?

- \(\mathcal{O}(n^3) \) using \(\frac{n}{3} \times \frac{n}{3} \times \frac{n}{3} \) sized block multiplication
- \(\mathcal{O}(n^{\log_3 18}) \) using \(\frac{n}{3} \times \frac{n}{3} \times \frac{n}{3} \) sized block multiplication
- \(\mathcal{O}(M(n)) \), where \(M(n) \) is the time complexity of multiplying two general \(n \times n \) matrices.
- \(\mathcal{O}(n^{2.376}) \), where \(M(n) \) is the time complexity of multiplying two general \(n \times n \) matrices.

No, the answer is incorrect
Score: 0
Accepted Answer:
\(\mathcal{O}(M(n)) \), where \(M(n) \) is the time complexity of multiplying two general \(n \times n \) matrices.

3) Which of the following is false for matrix multiplication of two \(n \times n \) matrices?

- It can be done in \(\mathcal{O}(n \log n) \) time.
- It can be done in \(\mathcal{O}(n^{\log_2 3}) \) time.
- It can be done in \(\mathcal{O}(n^2) \) time.
- It can be done in \(\mathcal{O}(n^{2.376}) \) time.

No, the answer is incorrect
Score: 0
Accepted Answer:
It can be done in \(\mathcal{O}(n \log n) \) time.

4) Strassen's recursive matrix multiplication algorithm reduces the number of multiplications over the naive method in each recursive step. For \(3 \times 3 \) matrices \(A \) and \(B \), what is the number of multiplications required by the naive method (multiplying each row of \(A \) with each column of \(B \)) vs Strassen's method?

- \(8 \) vs \(6 \)
- \(7 \) vs \(5 \)
- \(8 \) vs \(7 \)
- \(7 \) vs \(5 \)

No, the answer is incorrect
Score: 0
Accepted Answer:
8 vs 7

5) The naive algorithm for multiplying two \(n \times n \) matrices requires \(\mathcal{O}(n^3) \) multiplications. There has been a lot of work to improve this bound. What is the complexity of the current best algorithm?

- \(\mathcal{O}(n^{2.376}) \)
- \(\mathcal{O}(n^{2.373}) \)
- \(\mathcal{O}(n^{2.372}) \)
- \(\mathcal{O}(n^{2.371}) \)

No, the answer is incorrect
Score: 0
Accepted Answer:
\(\mathcal{O}(n^{2.373}) \)

6) Revise the definition and facts about Tensors from lectures and answer which of the following is correct?

- Order 3 tensor rank computation is NP-hard.
- Rank of an order \(n \) tensor lies between \(n^2 \) and \(n^3 \).

No, the answer is incorrect
Score: 0
Accepted Answer:
Both 1 and 2.