Assignment 3

The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

1) Let $f(x)$ be a polynomial of degree n over $\mathbb{C}[x]$, where n is a power of 2. Let ω be an n-th primitive root of unity. Given $\omega^0, \omega^1, \ldots, \omega^{n-1}$, what is the minimum time complexity of $O(n \log n)$, $O(n)$, $O(n^2 \log n)$, $O(n^2)$, $O(n)$ operations in which you can compute $f(\omega^0), f(\omega^1), \ldots, f(\omega^{n-1})$?

- $O(n \log n)$
- $O(n)$
- $O(n^2 \log n)$
- $O(n^2)$
- $O(n)$

No, the answer is incorrect.
Score: 0
Accepted Answer: $O(n \log n)$

2) Which of the following can be false for some n-th root of unity, ω?

- ω^0 is an n-th root of unity, for even n.
- $\omega^{n/2} = \omega^2$, for every integer k.
- $\omega^{n/3} = \omega^k$, for every integer k and even n.
- The n-th roots of unity form a cyclic group under multiplication.

No, the answer is incorrect.
Score: 0
Accepted Answer: None of these

3) Which of the following is false for polynomial multiplication of two degree n polynomials over $\mathbb{R}[x]$?

- If R has a n-th primitive root of unity and n is a power of 2, polynomial multiplication can be done in $O(n \log n)$ R operations.
- If R does not have a n-th primitive root of unity, polynomial multiplication can be done in $O(n)$ R operations.
- Polynomial multiplication can be done in $O(n)$ R operations for any R.

None of these
Score: 0
Accepted Answer: None of these

4) Let $f(x) = g(x)$ be two polynomials, over a field F, of degree at most ℓ. You learned in lectures about Schonhage-Strassen's algorithm for fast multiplying $f \times g$ where ℓ was assumed to be a power of 2. In which of the following scenarios the algorithm does not work?

- When the characteristic of F is 0.
- When the characteristic of F is 2.
- When the characteristic of F is odd.
- None of the above options.

No, the answer is incorrect.
Score: 0
Accepted Answer: None of these

5) In lectures, you saw the discrete fourier transform matrix $DFT[\omega]$, where ω is the primitive nth root of unity with ℓ, a power of 2. What is $DFT[\omega^0] \cdot DFT[\omega]$, $I_{\ell \times \ell}$ be the $\ell \times \ell$ identity matrix?

- $\ell \cdot I_{\ell}$
- I_{ℓ}
- $\omega^0 \cdot I_{\ell}$
- $\omega^{n/2} \cdot I_{\ell}$

No, the answer is incorrect.
Score: 0
Accepted Answer: $\ell \cdot I_{\ell}$

6) Let \mathbb{Z} be the ring of integers and ℓ be a positive integer. In which of the following ring extensions of \mathbb{Z}, the identity $1 + y + y^2 + \cdots + y^\ell - 1 = 0$ holds?

- $\mathbb{Z}/(y^\ell)$
- $\mathbb{Z}/(y^\ell - 1)$
- $\mathbb{Z}/(y^\ell + 1)$
- $\mathbb{Z}/(y)$

No, the answer is incorrect.
Score: 0
Accepted Answer: $\mathbb{Z}/(y^\ell + 1)$