Assignment 2

The last day for submitting the assignment has passed.
As per our records you have not submitted this assignment.

Due on 2020-06-20, 23:59 IST.

1) The linear system \(x + 2y = 0 \) and \(x - y = 0 \) represents

- two lines in \(\mathbb{R}^2 \) intersecting at a point.

- the same line in \(\mathbb{R}^2 \).

- two parallel lines in \(\mathbb{R}^2 \), NO intersection.

No, the preview is incorrect.
Correct Answer:
No, the preview is incorrect.
Correct Answer:
Answer Field:
No, the preview is incorrect.
Correct Answer:
Answer Field:

2) The linear system \(x + 2y = 0 \) and \(x - y = 0 \) represents

- two lines in \(\mathbb{R}^2 \) intersecting at a point.

- the same line in \(\mathbb{R}^2 \).

- two parallel lines in \(\mathbb{R}^2 \), NO intersection.

No, the preview is incorrect.
Correct Answer:
No, the preview is incorrect.
Correct Answer:
Answer Field:
No, the preview is incorrect.
Correct Answer:
Answer Field:

3) The linear system \(x + y = 0 \) and \(x - y = 0 \) respectively represent three lines in \(\mathbb{R}^2 \) ?

- with both having NO point of intersection.

- with both having a single point of intersection.

- with both having a single point of intersection and no point of intersection.

No, the preview is incorrect.
Correct Answer:
No, the preview is incorrect.
Correct Answer:
Answer Field:
No, the preview is incorrect.
Correct Answer:
Answer Field:

4) Consider the two statements given below:

- \(A \) is a square invertible matrix. Then the system \(Ax = b \) and \(\exists L \in \mathbb{R} \) are non-equivalent.

- Suppose \(A = 3 \) and \(c = 4 \). Then \(A = c \).

Which among the following is a CORRECT Option?

- Statement (i) is TRUE whereas Statement (ii) is FALSE

- Both Statement (i) and Statement (ii) are TRUE

- Both Statement (i) and Statement (ii) are FALSE

Statement (i) is TRUE whereas Statement (ii) is FALSE.
Correct Answer:
Statement (i) is TRUE whereas Statement (ii) is FALSE.
Correct Answer:
Answer Field:
Statement (i) is TRUE whereas Statement (ii) is FALSE.
Correct Answer:
Answer Field:

5) Let \(M = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 4 & 1 \\ 1 & 2 & 3 \end{bmatrix} \). Suppose the application of the Gauss Elimination Method to \(M \) gives \(L = U \) where \(L \) is lower triangular, \(U \) is upper triangular.

with \(L_{11} = 1 \) and \(U_{11} = 4 \) then the value of \(L_{11} \) equals

No, the preview is incorrect.
Correct Answer:
No, the preview is incorrect.
Correct Answer:
Answer Field:
No, the preview is incorrect.
Correct Answer:
Answer Field:

6) Let \(L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix} \) and \(B = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \). \(x \) is the solution of the system \(Lx = b \) and \(x \) is the solution of

\((L - 2I)x = 9 \).

Find the value of \(9 \times x \)

No, the preview is incorrect.
Correct Answer:
No, the preview is incorrect.
Correct Answer:
Answer Field:
No, the preview is incorrect.
Correct Answer:
Answer Field:

7) The parabola \(y = ax^2 + bx + c \) passes through the points \((x, y) = (1, 4), (2, 6) \) and \((3, 16) \) for certain values of \(a, b, \) and \(c \). Then the value of \(2a + 3b + 4c \) equals.

No, the preview is incorrect.
Correct Answer:
No, the preview is incorrect.
Correct Answer:
Answer Field:
No, the preview is incorrect.
Correct Answer:
Answer Field:

8) The graph of \(y = ax^2 + bx + c \) crosses through \((1, 2), (-1, 2), (2, 3) \) and \((0, 1) \) for certain values of \(a, b, \) and \(c \). Then the value of \(2a + 3b + 4c \) equals.

No, the preview is incorrect.
Correct Answer:
No, the preview is incorrect.
Correct Answer:
Answer Field:
No, the preview is incorrect.
Correct Answer:
Answer Field:

9) Let \(u = (1, 1, 2) \) and \(v = (-1, 2, 3) \). Then the condition on \(x, y, z \) such that the system \(au + v = (x, y, z) \) in the variables \(x, y, z \) is consistent equals

\(7x + 5y = 0 \)
\(7x - 5y = 0 \)
\(5z = 0 \)

No, the preview is incorrect.
Correct Answer:
No, the preview is incorrect.
Correct Answer:
Answer Field:
No, the preview is incorrect.
Correct Answer:
Answer Field:

10) Consider the linear system \(x + y + z = 5 \), \(x + 2y + z = 4 \), \(2x + 2y + 3z = 9 \) in the variables \(x, y \) and \(z \).

Then the above system has a unique solution for \(x = y = z = 1 \).

No, the preview is incorrect.
Correct Answer:
No, the preview is incorrect.
Correct Answer:
Answer Field:
No, the preview is incorrect.
Correct Answer:
Answer Field: